
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Applying artificial neural networks to top-down
construction cost estimating of highway projects at
the conceptual stage
Brendon Joseph Gardner
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Civil Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gardner, Brendon Joseph, "Applying artificial neural networks to top-down construction cost estimating of highway projects at the
conceptual stage" (2015). Graduate Theses and Dissertations. 14807.
https://lib.dr.iastate.edu/etd/14807

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14807?utm_source=lib.dr.iastate.edu%2Fetd%2F14807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

 
Applying artificial neural networks to top-down construction 

cost estimating of highway projects at the conceptual stage 
 
 

by 
 
 

Brendon Joseph Gardner 
 
 
 
 
 
 

A thesis submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 

Major: Civil Engineering (Construction Engineering and Management) 
 

Program of Study Committee: 
Douglas D. Gransberg, Major Professor 

Hyung Seok “David” Jeong 
Peter Savolainen 

 
 
 
 
 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2015 
 
 
 
 

Copyright © Brendon Joseph Gardner, 2015. All rights reserved.



www.manaraa.com

ii 
 

TABLE OF CONTENTS 
Page 

LIST OF FIGURES ....................................................................................................................... iv 

LIST OF TABLES .......................................................................................................................... v 

ACKNOWLEDGEMENTS ........................................................................................................... vi 

ABSTRACT .................................................................................................................................. vii 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 
Motivation ....................................................................................................................................... 2 
Content Organization ...................................................................................................................... 4 

CHAPTER 2. BACKGROUND ..................................................................................................... 6 
Current State-of-the-Practice .......................................................................................................... 6 
Artificial Intelligence ...................................................................................................................... 8 
Top-down Cost Estimating ........................................................................................................... 10 
Problem Statement ........................................................................................................................ 11 

CHAPTER 3. OVERALL APPROACH TO RESEARCH METHODOLOGY AND 
VALIDATION .............................................................................................................................. 12 
Base Artificial Neural Network .................................................................................................... 12 

Input variables ....................................................................................................................... 12 
Data collection efforts ........................................................................................................... 14 
Validation techniques ............................................................................................................ 16 

Global Methodology ..................................................................................................................... 16 

CHAPTER 4. RATIONALLY SELECTING DATA FOR HIGHWAY CONSTRUCTION …. 
COST ESTIMATING AT THE CONCEPTUAL STAGE ........................................................... 18 
Abstract ......................................................................................................................................... 18 
Introduction ................................................................................................................................... 18 
Background ................................................................................................................................... 19 

Objective ............................................................................................................................... 19 
Methodology ................................................................................................................................. 20 
Results ........................................................................................................................................... 20 
Discussion of Results .................................................................................................................... 24 

Rational sampling method ..................................................................................................... 25 
Conclusion .................................................................................................................................... 30 

CHAPTER 5. QUANTIFYING EFFORTS FOR DATA-DRIVEN CONCEPTUAL COST 
ESTIMATING FOR HIGHWAY PROJECTS ............................................................................. 31 
Abstract ......................................................................................................................................... 31 
Introduction ................................................................................................................................... 31 
Conceptual Cost Estimating Effort at Highway Agencies ............................................................ 32 
Data-driven CCE Models – Prior Studies ..................................................................................... 33 

Literature analysis ................................................................................................................. 33 



www.manaraa.com

iii 
 

Page 

Research objective ................................................................................................................ 36 
Research Methodology.................................................................................................................. 36 

Survey ................................................................................................................................... 37 
Input variable selection ......................................................................................................... 39 

Results ........................................................................................................................................... 40 
Survey response .................................................................................................................... 40 
Case-study ............................................................................................................................. 41 

Discussion ..................................................................................................................................... 47 
Conclusion .................................................................................................................................... 48 

CHAPTER 6. STOCHASTIC COST ESTIMATING OF HIGHWAY PROJECTS AT THE 
CONCEPTUAL STAGE USING BOOTSTRAP SAMPLING ................................................... 49 
Abstract ......................................................................................................................................... 49 
Introduction ................................................................................................................................... 49 

Optimism and bias associated with conceptual estimates ..................................................... 50 
Stochastic range estimating – the objective .......................................................................... 51 

Background ................................................................................................................................... 52 
Holistic risk approach ........................................................................................................... 52 
Bootstrap sampling method ................................................................................................... 53 
Stochastic estimating – previous studies ............................................................................... 55 

Methodology ................................................................................................................................. 57 
Data Analysis and Results ............................................................................................................. 58 

Results I: point estimating model .......................................................................................... 58 
Results II: stochastic estimating model ................................................................................. 60 

Discussion ..................................................................................................................................... 62 
Conclusion .................................................................................................................................... 63 

CHAPTER 7.  CONCLUSIONS AND LIMITATIONS .............................................................. 64 
Conclusions ................................................................................................................................... 64 
Limitations .................................................................................................................................... 65 

CHAPTER 8. CONTRIBUTIONS AND RECCOMENDATIONS                                                 
FOR FUTURE RESEARCH ........................................................................................................ 66 
Contributions ................................................................................................................................. 66 
Recommendations for Future Research ........................................................................................ 67 

BIBLIOGRAPHY ......................................................................................................................... 69 

APPENDIX A. INPUT VARIABLES .......................................................................................... 74 

APPENDIX B. COMPLEXITY RATING CHART ..................................................................... 75 

APPENDIX C. SURVEY AND RESULTS ................................................................................. 77 
 



www.manaraa.com

iv 
 

LIST OF FIGURES 

Page 

Figure 1. Construction cost estimating timeline (adapted from Schexnayder et al. 2003) ............. 1 

Figure 2. Cost estimating dilemma (adapted from Bode 2000) ...................................................... 2 

Figure 3. Combining multiple databases for cost estimating model ............................................. 15 

Figure 4. Global methodology covered in this thesis .................................................................... 17 

Figure 5. Timeline showing the database used in data-driven CCE models. ................................ 22 

Figure 6. Accuracy of data-driven CCE models published and database size .............................. 22 

Figure 7. Proposed rational sampling steps .................................................................................. 25 

Figure 8. Distribution of Sample I, II and III based on two key input variables .......................... 27 

Figure 9. Validating the artificial neural network with the test data ............................................. 28 

Figure 10. Literature analysis of inputs versus error..................................................................... 35 

Figure 11. Proposed dual-objective hierarchy tree for conceptual cost estimates ........................ 36 

Figure 12. Research steps .............................................................................................................. 37 

Figure 13. Ordinal scale used for the two survey questions ......................................................... 39 

Figure 14. Selecting input variables to meet the dual-objectives of CCE .................................... 39 

Figure 15. Results of MDT cost estimating survey ...................................................................... 41 

Figure 16. Preference for selecting input variables ....................................................................... 42 

Figure 17. ANN performance and effort expended ...................................................................... 44 

Figure 18. MRA performance and effort expended ...................................................................... 46 

Figure 19. Bootstrap process (developed from Efron and Tibshirani (1993) ............................... 54 

Figure 20. Visual representation of estimate confidence for four projects ................................... 62 

 

 

 

 

 



www.manaraa.com

v 
 

LIST OF TABLES 

Page 

Table 1. Cost Estimating Classification (adapted from AASHTO 2013) ....................................... 7 

Table 2. Proposed input variables trialed in Chapters 4, 5 and 6. ................................................. 14 

Table 3. Construction cost estimating models studied .................................................................. 21 

Table 4. Input variables used ........................................................................................................ 26 

Table 5. Error in the testing data ................................................................................................... 29 

Table 6. Construction cost estimating models studied to understand input variables .................. 34 

Table 7. Cost influencing attributes identified at MDT ................................................................ 38 

Table 8. Input variables selection order and distance from ideal input ........................................ 43 

Table 9. Model details for point estimate and stochastic estimate ................................................ 57 

Table 10. Point estimate versus actual construction cost .............................................................. 59 

Table 11. Range estimate results for 38 test projects .................................................................... 60 

 

 

 

 

  



www.manaraa.com

vi 
 

ACKNOWLEDGEMENTS 

 Firstly I would like to thank both Dr. Doug Gransberg and Dr. David Jeong for the 

inspiration and support to complete this research. The many meetings and chapter reviews were 

greatly appreciated.  

Secondly, many thanks to staff at MDT whom have helped with data collection and 

sharing of cost estimating practices through meetings and correspondence. I would especially 

like to acknowledge Lesly Tribelhorn and Kris Christensen.  

 I would also like to thank my friends for the fantastic experience at Iowa State 

University. Particularly thanks to Emily and Jorge whom have read, critiqued and supported my 

work over the past 1.5 years.    



www.manaraa.com

vii 
 

ABSTRACT 

Conceptual cost estimating (CCE) is a challenging task for highway agencies due to the 

limited design information available at early stages of project development. As a result, agencies 

frequently experience large variance from the initial construction estimate to the final cost. 

Despite the initial estimate’s low level of confidence, it is required for all highway projects as an 

input to feasibility studies and to establish the project’s budget.  

Many authors have explored the use of artificial intelligence and multiple-regression 

analysis with promising findings to aide CCE. Unfortunately, at this writing, no highway 

agencies are known to have implemented these data-driven techniques in practice. One of many 

reasons for this situation is related to a belief that accurate quantities of work are required to 

produce an accurate estimate. This approach is termed ‘bottom-up’ estimating and is clearly 

impossible at the initial stage of project development. A second reason relates to the investment 

necessary to create a reliable database structure that permits high-level statistical analysis. 

Therefore, this thesis seeks to investigate improvements to data-driven, ‘top-down’ CCE 

methods to enable practical application. 

Firstly, a method to rationally select data used in the model is investigated. The analysis 

reported in this thesis found that random sampling does not test the true performance of a model 

for its future application. Secondly, a method to select input variables that have the largest 

impact on predicting the construction cost but require the least amount of effort is proposed. The 

models reached a point whereby expending additional effort  to include more input variables did 

not yield an increased performance and debunked the notion that ‘bottom-up’ estimating 

approaches are intuitively more accurate. This finding is significant for practitioners as resources 

expended to collect and store additional data points than required is wasted at the conceptual 

stage. 

Finally, a method to express the conceptual estimate stochastically is proposed. The 

traditional deterministic approach of relying on a specific number communicates false precision. 

This thesis proposes combining artificial neural networks with bootstrap sampling to create an 

empirical distribution of the construction costs and better communicate a likely range of project 

costs. 
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CHAPTER 1. INTRODUCTION 

The first estimate of a highway project’s construction cost is defined as the conceptual 

estimate in the project development timeline shown in Figure 1. At the conceptual stage there is 

little information known about a project and the detailed design has not yet begun. Further cost 

influencing information established during project design stages is included when developing the 

Design Estimates and Engineer’s Estimates. Highway agencies are therefore more confident with 

these later estimates.  

 

Figure 1. Construction cost estimating timeline (adapted from Schexnayder et al. 2003) 

The development of an effective conceptual estimate can be a challenging task for public 

owners as these estimates are conducted prior to the design phase with minimal scope definition. 

Despite the lack of knowledge about a project at the conceptual cost estimating (CCE) stage, 

these estimates are required by public agencies to estimate the cost of projects for statewide 

fiscal funding requirements (Anderson et al. 2007, FHWA 2015). This federal requirement is for 

state departments of transportation (DOT) to develop a State Transportation Improvement 

Program (STIP) detailing four years of upcoming projects (FHWA 2015).  

Flyvbjerg et al. (2002) investigated public transportation projects and found that 86% of 

projects had experienced cost growths since the initial estimate, on average they were 28% 

higher than the initial estimate. That study included 258 transportation infrastructure projects 

from different historical periods, geographical regions and project types, with a combined value 

of $90 billion. Flyvbjerg et al. also discovered that there have been no improvements in the 

accuracy of the initial cost estimate from the 70 years of data that was analyzed. In 2003, 

Schexnayder et al. found that publicity called into question the “ability of departments of 

transportation to forecast accurately and to control the final cost of their projects.”  
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Cost estimates are typically classified in the following five groups (AASHTO 2013; 

Turochy et al. 2001): 

• Preliminary Engineering (PE),  

• Right-of-way (ROW),  

• Final Design – Plans, specifications and estimate (PS&E) 

• Construction costs (CN), and  

• Construction Engineering (CE) 

PE concerns the costs associated with project advancement during the planning stage. 

ROW is all costs associated with land purchase. PS&E is costs associated with producing the 

final design, specifications and estimation of the construction costs prior to bid. CN is the 

expenses associated with the construction process. CE covers the monitoring costs incurred with 

management during the construction phase by the highway agency. This thesis concentrates 

solely on estimation of the construction costs, or CN amount, specifically at the conceptual stage 

of project development.  

Motivation 

One of the key problems at the CCE stage is the ‘limited information’ known about a 

particular project’s scope during the planning stage (Schexnayder et al. 2003; AASHTO 2013). 

Importantly, it is at the CCE stage where designers have the greatest ability to influence the end 

project cost. This introduces the ‘cost estimating dilemma’ as shown in Figure 2 (Bode 2000). 

Confidence in CCE enables designers to alter designs and realize savings when they have the 

greatest ability to influence the cost of the project. This ‘dilemma’ highlights the importance of 

an accurate conceptual estimate as the cost of construction can be “impacted significantly by 

decisions made at the design stage” (Gunaydin and Dogan 2004).     

 

Figure 2. Cost estimating dilemma (adapted from Bode 2000)  
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Estimating construction costs at the conceptual stages of project development is critical 

for decision-makers to determine a reasonable project budget and make decisions regarding the 

project’s ultimate feasibility (Harbuck 2007; Lowe et al. 2006; AASHTO 2013). Early 

construction cost estimates are “the basis for key financial decisions. Thus, the inability to 

accurately estimate the project costs can result in poor financial decisions” (AASHTO 2013). If 

the conceptual cost estimate is too high, then a project may be erroneously rejected based on an 

unfavorable benefit-to-cost ratio.  On the other hand, if the cost estimate is too low, then a 

project may be found to be feasible when in fact it is not and should have been rejected 

(AASHTO 2013).  

Highway agencies need reasonable accuracy in estimating conceptual construction costs 

to ensure that tentative construction programs optimize available fiscal year funding. Under-

estimation during the CCE stage can result in agencies running short of funds to complete its 

annual construction program. Over-estimating costs can result in too few projects being selected 

for funding in a given fiscal year, this leads to not having enough projects ready and advertising 

them before they are truly ready to let, or worse, the loss of federal funding (MDT 2007).   

The design budget, a major portion of the preconstruction budget, is typically established 

as a percentage of estimated construction costs (Jeong and Woldensenbet 2012). It therefore 

follows that if the construction cost estimate is low, the design budget will also be less than the 

amount required. The amount of a project’s budget allocated to design was found to directly 

influence its overall construction cost growth from the early estimate (Gransberg et al. 2007). 

Gransberg et al.’s work observed that up to a point, the greater the investment in design the 

lower the construction cost growth from its initial estimate. Thus, underfunding the design 

budget yields the potential for construction budget overruns. As a result, the need to carefully 

calculate construction costs at an early stage to ensure an appropriate budget for the design and 

control cost growth to the project becomes even more important.  

The four key motivators for studying conceptual estimating, discussed above, are real 

issues faced by highway agencies. This research is part of a bigger research project to develop an 

artificial neural network to provide a data-driven conceptual cost estimating tool for Montana 

Department of Transportation (MDT). Much of the research in this thesis is leveraging the 

artificial neural network created for MDT.    
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Content Organization 

 Chapter 2 contains background for the reader. Specifically the state-of-the-practice of 

CCE is discussed, background to artificial intelligence in the area of construction cost estimating 

and application of ‘top-down’ construction cost estimating. At the end of Chapter 2 the specific 

problem statements in the report are stated.  

 Chapter 3 highlights the overall approach and validation methodology. In this chapter the 

creation of a database and artificial neural network model are introduced. This includes data 

collection methods, selecting input variables and validation techniques. Later chapters utilize the 

model created in Chapter 3 to answer the problem statements set in Chapter 2. Chapter 3 finishes 

with a diagram of the global methodology.   

This thesis contains three journal articles shown in Chapters 4, 5 and 6. The chapters are 

stand-alone documents, each with a specific focus on conceptual estimating of highway projects 

using data-driven techniques. Whilst the focus of each article differs, they all contribute to the 

overall research objective. The chapters commence with data sampling techniques for artificial 

neural networks (Chapter 4); then the focus shifts to quantifying the level of effort expended to 

conduct the conceptual cost estimate (Chapter 5); finally the report investigates the ability to 

communicate the conceptual cost estimate stochastically through a range interval (Chapter 6).  

 Chapter 4 will be submitted for publication in the American Society of Civil Engineers 

Journal of Computing in Civil Engineering. This chapter proposes a method that could be used to 

sample projects to be included in the artificial neural network database of historic projects. This 

chapter highlights to highway agencies that performance of data-driven CCE models need testing 

against a sample of data that is reflective of the future distribution of project types to be 

predicted.  

 Chapter 5 will be submitted for publication in the American Society of Civil Engineers 

Journal of Construction Management in Engineering. This chapter specifically focuses on 

measuring the level of effort expended to conduct the conceptual estimate. More specifically a 

method is proposed for estimators to focus on collecting input variables which require a low 

level of effort but have a high impact on the construction cost estimate.  

 Chapter 6 will also be submitted for publication in the American Society of Civil 

Engineers Journal of Risk Management and Uncertainty. This chapter investigates the bias 

associated with point estimates developed at the conceptual stages. Further it investigates a 
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method to produce an empirical distribution of expected construction costs through the use of 

combining artificial neural networks and bootstrap sampling. Research is validated by comparing 

the actual final construction cost to that expressed by the range estimate.  

 Chapter 7 summarizes the main conclusions from the papers and addresses the problem 

statements and objective of this report. Additionally, Chapter 7 discusses the limitations of those 

conclusions. Finally, Chapter 8 outlines the key contributions to the conceptual estimating body 

of knowledge and areas for future research.  
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CHAPTER 2. BACKGROUND 

This chapter benchmarks the current state-of-the-practice used to estimate the conceptual 

cost of projects at highway agencies. It then discusses the application of artificial intelligence to 

the field of conceptual estimating at highway agencies. Finally the chapter poses the specific 

research problems investigated in this thesis.  

Current State-of-the-Practice 

The American Association of State Highway and Transportation Officials (AASHTO) 

recently released a Practical Guide to Cost Estimating (2013) to provide a nationally recognized 

set of procedures to conduct the cost estimating at highway agencies for all project development 

stages. That guidebook describes conceptual estimates as an early projection of cost when 

limited information is known about a project. The suggested method for estimating at the 

conceptual stage is to develop statistical relationships between cost factors for completed 

projects and use these to predict future construction costs. This is suggested through the use of 

parametric cost estimating relationships, such as cost-per-mile of a highway or the cost-per-area 

for bridge, and adjusted through historical percentage cost factors. The guidebook suggests 

storing historical data in a spreadsheet or computer software such as AASHTOWare ® Project 

BAMS/DSS. To reflect uncertainty at the conceptual stage the guidebook developed 

classifications with accepted uncertainty summarized in Table 1. The accepted estimate ranges at 

the planning development stage, shown in Table 1, are referenced in later chapters to make 

comparisons with the performance of the data-driven techniques investigated.  
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Table 1. Cost Estimating Classification (adapted from AASHTO 2013) 

Project 
Development 

Phase 

Project Maturity 
(% of the project 

definition 
completed) 

Purpose of the Estimate Estimating 
Methodology 

Estimate 
Range 

Planning 

0 to 2% 
Conceptual Estimating – 
Estimate Potential Funds 
Needed (20-year plan) 

Parametric  
-50% to 
+200% 

1% to 15% 
Conceptual Estimating – 
Prioritize Needs for Long-
Range Plans (10-year plan) 

Parametric or 
Historical Bid-Based 

-40% to 
+100% 

Scoping 10% to 30% 
Design Estimating – Establish a 
Baseline Cost for Project and 
Program Projects 

Historical Bid-Based 
or Cost-Based  

-30% to 
+50% 

Design 30% to 80% 
Design Estimating – Manage 
Project Budgets against 
Baseline 

Historical Bid-Based 
or Cost-Based 

-10% to 
+25% 

Final Design 90% to 100% 
Compare with Bid and Obligate 
Funds for Construction 

Cost-Based or 
Historical Bid-Based 
Using Cost Estimate 
System  

-5% to  
+10% 

 

The National Cooperative Highway Research Program (NCHRP) produced Report 574 

on Guidance for Cost Estimation Management for Highway Projects during Planning, 

Programming and Preconstruction (Anderson et al. 2007). That NCHRP guidebook was created 

to identify cost estimating management practices for each phase of project development in order 

to reduce cost escalation on highway projects. Various management strategies are presented to 

reduce the risk of cost growth. Under the planning development section methods identified 

included estimate management, risk management, document quality and estimate quality. The 

estimate quality section in the report identifies six tools including the use of computer software, 

conceptual estimation, estimate reviews (internal and external), project scoping and right-of-way.  

Surveys investigating current practices have been completed by Byrnes (2002) and 

Turochy et al. (2001). Both were conducted for estimating construction costs of highway projects 

at the conceptual stage. Although the actual technique and terminology varies by state, both of 

these studies found that CCE approaches utilized by highway agencies are generally classed into 

one the following three categories: 

• “cost-per-mile” of typical sections of highway or bridge, 

• estimating approximate quantities of major work items, or 
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• no documented or uniform method, instead using experience and engineering 

judgement.  

The report by Turochy et al. (2001) was completed for Virginia Department of 

Transportation (VDOT) in response to “attention from news media and elected officials” due to 

major increases in highway project cost estimates since the planning stage. This further 

highlights the motivation for creating an accurate conceptual cost estimate and the public 

scrutiny faced by highway agencies for failing to do so.  

It was discovered by Byrnes (2002) when he surveyed all 50 state DOTs that no agencies 

were at that stage employing sophisticated mathematical models. The same finding was reached 

by Turochy et al. (2001) with the suggestion that there is a reliance on the experienced personnel 

at highway agencies to conduct the conceptual estimate. Turochy et al. (2001) specifically 

identified the potential to develop models for estimating highway project costs through the use of 

completed cost data with a large number of projects. The details of possible models, proven in 

the literature, are described in the artificial intelligence section that follows.  

Artificial Intelligence 

The advancement in digital technology and data storage capacity has meant that state 

DOTs have an abundance of data available from past projects to estimate the cost of future 

projects with. The literature shows that two data-driven cost estimating methods, artificial neural 

networks (ANNs) and multiple-regression analysis (MRA), have been proven to provide 

reasonable estimates of the conceptual costs of highway projects (Bell and Ghazanfer 1987; 

Hegazy and Ayed 1998; Mahamid 2011). Both techniques link an historical database of project 

attributes to the actual construction cost. These relationships identified within the data can then 

be used to forecast the construction cost of future projects.  

MRA is the development of a regression equation to link independent project variables to 

the cost (Turochy et al. 2001). The equation assigns weights to each of the independent attributes 

through the method of least error (Turochy et al. 2001). Future construction costs can be 

estimated using the same equation weights but with the new independent variables. The 

downside of MRA is that an assumption must be made about the relationship between the terms 

(Sonmez 2008). Many authors of the MRA literature simplified this required assumption to be a 

linear regression equation (Bell and Ghazanfer 1987; Sonmez 2011; Mahamid 2011). Alternative 

relationships could be investigated such a quadratic correlation between terms. Multivariate 
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Adaptive Regression Splines (MARS) is another such relationship with emerging publications, in 

this relationship instead of one linear line there are multiple ‘piecewise’ linear sections (Haleem 

et al. 2013).  

 ANNs do not require a discrete assumption that a link exists between the construction 

cost and the variables (Kim et al. 2004). The model uses artificial intelligence to find patterns 

within the database to link these to the dependent variable (construction cost). The ANN model 

creates layers of arbitrary data to transform the input variables to the construction cost. Historical 

data is used to train the ANN model and recognize relationships within the database to the 

dependent variable. This trained model is then used to forecast future construction costs by 

looking for similar patterns and predict the dependent variable.  

Bell and Ghazanfer (1987) published one of the first MRA models for predicting the cost 

of highway construction maintenance projects with a database of 174 projects. When validated 

against test projects it could predict the construction cost to within 17% on average. This error is 

well within the range recommended in the AASHTO Practical Guide to Cost Estimating, for 

which the conceptual estimate should be in the range of -40% to +100% of the final construction 

cost (AASHTO 2013) shown in Table 1. 

Since Bell and Ghazanfer published their model more than 15 authors have published 

data-driven CCE models with similar promising results using MRA and ANNs at the CCE stage. 

In 1992, Sanders et al. published an MRA model with only a 6% error on test projects. Creese 

and Li, in 1995, published an ANN model with 8.24% estimating error for the construction costs 

of timber bridges. In 1998 Hegazy and Ayed published an ANN model that could estimate the 

construction cost of highway projects in Newfoundland, Canada, to within 19.33% of the actual 

cost. Kim et al. (2004) completed a comprehensive study comparing the performance of ANN, 

MRA and case-based reasoning to calculate the construction cost of residential buildings in 

Seoul, South Korea. A total of 530 projects were used in the database, far exceeding the number 

of projects used by other authors. The estimating accuracy of the model was 3.0% and 7.0% for 

ANN and MRA models respectively. Details of all 16 studies are analyzed in depth in the 

literature review sections of Chapters 4 and 5. 

Despite promising results from the literature, no DOT is using a data-driven CCE model 

to assist them in calculating the construction costs of their projects. It is however known that 

CCE conducted by DOTs lack results with high confidence (Chou et al. 2006; Byrnes 2002; 
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Walton and Stevens 1997). Turochy et al. (2001) concluded that DOTs are not employing 

computer model techniques to improve estimate confidence due to: 

  1. Resistance to replace engineering judgment with computer procedures, and  

2. Long term reliance on the skills and experience of planners and engineers.   

One benefit of data-driven estimation, such as the ANNs or MRA, is the ability to 

remove bias and possible pressure to keep estimates under published budget ceilings, a challenge 

estimators regularly face (Anderson et al. 2007). Flyvbjerg et al. (2002) discovered that 

underestimation is the rule rather than exception for transport infrastructure projects merely to 

keep the project from being cancelled before construction begins. Computer tools using historic 

project information to predict future construction costs can remove the optimism at the CCE 

stage by relying on real construction data, and taking the emotion and possible bias out of the 

process.  

Multiple researchers have proven the ability of ANNs to produce superior results to MRA 

in the field of construction cost estimating (Petroutsatou et al. 2012; Kim et al. 2004; Moselhi 

and Siqueira 1998), some researchers have proven the contrary (Gunduz et al. 2011; Setyawati et 

al. 2002). Many of the research problems investigated in this thesis use ANNs. This was due to a 

superior performance of this tool over MRA for the data collected in this research project. 

Despite this, the use of MRA will be briefly investigated in Chapter 5. This research does not 

attempt to investigate whether ANN models or MRA models are the most accurate. 

Top-down Cost Estimating 

One approach to estimate construction cost is for the estimator to break up the project 

into individual activities and then estimate the cost of each activity based on the resources of 

materials, labor and plant required (Kim et al. 2012). This approach is termed ‘bottom-up’ 

estimating. Each resource is then assigned unit rates and the summation of each activity cost is 

the estimated total project cost. These rates often come from historical bid price averages that 

estimators have recorded at the highway agency (Byrnes 2002). Byrnes’ research concluded that 

likelihood of estimate accuracy was directly proportional to the amount of bid tabulation data the 

estimators included in the database.  

An issue with this approach at the conceptual development stage is that quantities are 

uncertain because the design is far from complete (Kim et al. 2012). A superior approach at the 

conceptual stage is to focus on the “larger picture” (AASHTO 2013). This is termed a ‘top-
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down’ cost estimate and is commonly used at the conceptual stage when project definition is still 

fluid (Kim et al. 2012). The ‘top-down’ estimate focuses on project characteristics such as 

location, traffic management considerations, utility impacts and other complexities that drive the 

construction cost (AASHTO 2013).  

Top-down cost estimating principles are applied in this research to develop the database 

used for the construction of an artificial neural network and its resultant cost estimate. Top-down 

characteristics are used as the input variables to the estimating model. Further details on the 

types of cost influencing information employed are discussed in Chapter 3, the overall approach 

to research methodology and validation.   

Problem Statement 

The literature has shown that artificial intelligence methods can be applied to produce a 

conceptual estimate with output of suitable accuracy. However, it has been noted that data-driven 

methods are not being used in practice by highway agencies in the United States. Additionally, 

conceptual cost estimates are frequently inaccurate and expose highway agencies to public 

scrutiny over unacceptable construction cost growth.  

The main objective of this research is to identify tools that highway agencies may utilize 

if they choose to adopt data-driven techniques from the literature, thus improving the practical 

application of data-driven methods. This objective is explored by focusing on the following three 

questions: 

1. Is there a rational method to sample data that is to be used for artificial neural 

networks? 

2. Does adding input attributes (project detail) to ‘top-down’ estimating methods 

actually yield further improvements in model performance? 

3. What data-driven method could be used to better communicate the confidence level 

attached to the conceptual estimate?
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CHAPTER 3. OVERALL APPROACH TO RESEARCH METHODOLOGY 
AND VALIDATION 

This thesis focuses on conceptual cost estimating of highway projects at one highway 

agency, the Montana DOT otherwise known as MDT. As such, data used in this study was 

collected for 189 different highway projects for 5 years of construction at MDT. The section 

begins by discussing the method used to develop a base ANN used as part of this project. 

Finally, the global methodology used to meet the thesis objectives are discussed.  

Base Artificial Neural Network 

Prior to answering the three main research objectives (Chapters 4, 5 and 6) a database of 

project attributes and construction costs required development. In this section the method to 

select the project attributes (input variables) and creating the database is discussed. Additionally 

the validation technique for evaluating the performance of data-driven methods is discussed. 

Once the database was organized in a commercial spreadsheet, a commercial plug-in to that 

spreadsheet was used to for the ANN prediction model.  

Input variables 

Bell and Ghazanfer (1987) concluded that input variables selected have a significant 

effect on the prediction capability of the model. The same deduction has been reached by at least 

two other authors of data-driven CCE models (Gunyadin and Dogan 2004; Setyawati et al. 

2002).  It is during the early stages of creating a data-driven model that attributes need selecting 

as model-creators usually only have a one-time commitment to collect the cost predictors (Smith 

and Mason 1997).  

Studying previous literature on data-driven CCE models yielded four publications most 

relevant to highway construction cost estimating. Mahamid (2011) investigated 9 variables in the 

data-set collected. Al-Tabtabai et al. (1999) also included 9 variables in the data-set collected. 

Hegazy and Ayed (1998) included 10 input variables. Bell and Ghazanfer (1987) included 2-5 

input variables depending on the specific highway project type.  

Through meetings held at MDT and the literature studied above, 29 possible input 

attributes were initially suggested for predicting a typical project’s construction cost. The 

attributes selected for the final model are typically chosen through trial and error, therefore 
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having more input variables available rather than less seemed logical. The technique of selecting 

the final input attributes through trial and error was reported in at least five other studies on CCE 

in the construction industry (Creese and Li 1995; Hegazy and Ayed 1998; Bell and Ghazanfer 

1987; Gunduz et al. 2011 and Petroutsatou et al. 2012).  

Highway agencies typically construct a broad range of project types including bridge 

construction, pavement preservation, highway maintenance and miscellaneous tasks. The three 

major work-types conducted at MDT are shown below:  

• Pavement Preservation – minor rehabilitations and resurfacing 

• Construction – major highway rehabilitations 

• Bridge – new bridge construction or major rehabilitation of a bridge 

To be able to concentrate data collection efforts and create a methodology, one major 

project type was selected for investigation in this thesis: pavement preservation projects. This 

was selected from interviews with MDT as the staff expected that these projects should be the 

most predictable and provide a suitable test for the estimating methodology.  

The desired 29 input attributes, refined from literature review and meetings at MDT, are 

shown in Appendix A. Each input attribute was aligned with possible measures from the 

databases discussed in the following section. The 29 attributes were further reduced to the 17 

most relevant to pavement preservation cost indicators shown in Table 2. These were selected 

based on guidance from MDT personnel and data availability for pavement preservation projects. 

An example is the exclusion of bridge type (steel/concrete), MDT deemed that typically the only 

bridge work in pavement preservation projects is for deck maintenance and repairs.   
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Table 2. Proposed input variables trialed in Chapters 4, 5 and 6. 

Proposed input attributes 
Urban or rural project 
Site topography (steep, flat or undulating terrain) 
Construction on Native American Reservations 
Start and End Stations, Length and Width 
Number of bridges in scope 
Design Average Annual Daily Traffic (AADT) 
Typical Section (depths of surfacing) 
Design speed(s) 
Intersection signalization and signage 
Right-of-way acquisition costs 
Traffic Control - closures or detours 
Curb & Gutter and Sidewalk 
Contract Time 
Letting Date 
Bridge deck areas 
Geotechnical - subsurface & slope recommendations 
Extent of Utility relocations and costs 

 

Previous literature published on ANNs and MRAs have used between 2 and 9 input 

variables. Additionally it was discovered that the final input variables for many publications of 

data-driven CCE models were selected based on trial and error. The 17 available input variables 

shown in Table 2 were used as a base in each of Chapters 4, 5 and 6; however, not all 17 input 

variables were used in each of the models.   

Data collection efforts 

 Because MDT had not yet developed a database specifically for ‘top-down’ estimating of 

highway projects, this was included as a task in the overall project MDT research project 8227-

001. Multiple databases required combining, along with manual cross-checking, to obtain the 

attributes necessary for estimating the construction cost with ‘top-down’ variables. The databases 

referenced in Figure 3 are: 

• GIS: Roadway attributes contained in the geographical information system (GIS) 

database. 

• TIS: Project attributes entered from the construction drawings in the transportation 

information system (TIS) database. 

• PPMS: Data recorded on the Program and Project Management System (PPMS) during 

the preconstruction activities. 
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• PFR forms: Conceptual design details completed as a report in the Preliminary Field 

Review (PFR) forms. This information is textual and the report is required for the 

transportation committee approval of the conceptual estimate.  

• Site Manager: Data stored during the construction phase. Of specific interest in this 

database was the final construction cost (CN Actual), the dependent variable in the cost 

estimating model.  

  

 

Figure 3. Combining multiple databases for cost estimating model 

 Many of the databases required manual inspection. For example lengths were included in 

multiple databases (TIS, PPMS and PFR forms), but discrepancies between these numbers 

required verification. An analysis of the data collected for each input variable is shown in 

Appendix A. Data extracted from PFR forms required manual extraction and entering. A 

complexity rating chart was developed for reading the PFR forms, shown in Appendix B, 

detailing complexity levels and information to be extracted from the forms.  

Project construction costs required inflation to a base year to reflect the rising 

construction costs. The data was collected for construction years 2009-2013. An inflation factor 
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of 3% per annum was applied to the actual construction costs for all projects from the expected 

mid-point of construction to align with the year 2014 (base-reference). The 3% rate was 

nominally selected with advice from meetings at MDT and is the rate currently applied to all 

projects in their construction program. Future research could investigate a more suitable inflation 

value, however this was not an objective of this thesis.  

Validation techniques 

In order to validate the usefulness of a data-driven estimating model, the prediction 

model must be tested. Prediction ability of a model is most easily tested with projects where the 

final construction cost is known in order to compare the predicted cost to the actual. A test 

selection of projects from the database must be retained from training the ANN or MRA model. 

Typically a randomly selected 20%-30% of the data is retained for testing the model 

(Petroutsatou et al. 2012; Moselhi and Siqueira 1998). For this project 20% was selected in a 

selection process shown in Chapter 4, the method of which is a major contribution of this thesis.  

The error in the data-driven CCE models collected for comparison was calculated using 

the Mean Average Percentage Error (MAPE) of the testing data. This method is commonly used 

by authors of data-driven CCE models in the construction industry (Petroutsatou et al. 2012; 

Gunduz et al. 2011; Mahamid 2011; Lowe et al. 2006; Kim et al. 2004). Calculation of the 

MAPE is furnished using Equation 1 (Mahamid 2011). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(%) = �
100%
𝑛𝑛

���
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑖𝑖
𝑀𝑀𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

                                                                                                     (1) 

where: 

𝑛𝑛 = Number of data-points used to test the model 

𝑀𝑀𝑖𝑖 = Predicted construction cost using the data-driven CCE model for the ith project 

𝑀𝑀𝑖𝑖= Actual construction cost from the historical records for the ith project 

Global Methodology 

The overall methodology and validation techniques used in this research is illustrated in 

Figure 4. The base model introduced in Chapter 3 is used to answer all three research problem 

statement questions. As shown in Figure 4, the motivation for the problem statements were 

discovered through content analysis and literature reviews into data-driven CCE models and 

current state-of-the-practice.  
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Figure 4. Global methodology covered in this thesis 
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CHAPTER 4. RATIONALLY SELECTING DATA FOR HIGHWAY 
CONSTRUCTION COST ESTIMATING AT THE CONCEPTUAL STAGE 

Gardner, B., Gransberg, D. D., and Jeong, H. S. (2015). “Rationally Selecting Data for Highway 

Construction Cost Estimating at the Conceptual Stage.” To be submitted to ASCE Journal of 

Computing in Civil Engineering. 

Abstract 

Over the past 30 years there has been little improvement in construction cost estimating 

confidence, despite significant advancement in computing capabilities and data availability. 

During this period the literature reveals a number of highly accurate prediction models, however 

many are supported by databases containing very few data points. The practicality of these 

models is limited due to their narrow scope and lack of defined sampling techniques used to 

select their data points. Models to estimate construction costs at early stages of project 

development using artificial neural networks and multiple-regression analysis have been 

developed for some time, but they are not being used in practice by US state DOTs. This paper 

investigates how data point selection limits the practical performance of these models and a 

contributing reason why sophisticated models have not yet been implemented by DOTs. A total 

of 20 conceptual cost estimating models, using artificial neural networks and multiple-regression 

analysis, were assessed in this study. While a data-driven conceptual cost estimating model may 

appear accurate, not appropriately sampling the data inputs will result in a model with little 

practical application and therefore not suitable for use in industry. This study found that data 

used to train conceptual cost estimating models need to include attributes reflective of the 

projects in the total population of data. As a result, this research proposes a rational method to 

sample project data. 

Introduction 

Previous literature has proven the ability of ANNs and MRA to predict the conceptual 

construction cost of projects to suitable accuracy, this was discussed in the artificial intelligence 

section of Chapter 2. However, it was also noted in Chapter 2 that no highway agency is 

currently known to utilize this data-driven, ‘top-down’ artificial intelligence method to conduct 

their conceptual cost estimate. This is despite the proven ability of data-driven methods and the 

continued lack of confidence with the conceptual development stage estimate of construction 
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cost (Flyvbjerg et al. 2002; Schexnayder et al. 2003). This chapter investigates the practicality of 

models published in the literature and investigates contributing reasons why they have not yet 

been implemented in practice.  

Background 

Literature supports the case that more data in the prediction model results in improved 

reliability and accuracy. When Bell and Ghazanfer (1987) created an MRA model using 174 

highway projects their research concluded - “larger data-sets tend to reinforce the reliability of 

the model.” This judgement is supported by many authors of data-driven CCE models (Setyawati 

et al. 2002, Gunaydin and Dogan 2004, Tatari and Kucukvar 2011 and Gunduz et al. 2011) 

where these authors had between 16 and 74 projects in their databases and used a mixture of 

ANN and MRA for their prediction models. 

In 1998 Elhag and Boussabaine recommended that future CCE models should exploit 

more than the 30 training data points they used in their research to improve the model accuracy. 

Following this, in 2002, Emsley et al. created a model with nearly 300 projects to specifically 

address the deficiencies in the ANN created by Elhag and Boussabaine. Other data-driven CCE 

models created with a notable size of database: Kim et al. (2004) and Lowe et al. (2006) used 

530 and 286 historical projects respectively for their databases. 

Weaknesses in the size of training data contributing to the limited practical application of 

data-driven CCE models has been suggested but not yet thoroughly investigated. Setyawati et al. 

(2002) recommended that the effects of more data in building and construction estimating need 

to be further studied. This paper aims to contribute to understanding the size of training data 

selection and model reliability in relation to the construction industry.  

Objective 

The objective of this paper is to evaluate the use of data-driven CCE models to help 

determine the limiting factor for practical use in industry. As such this paper explores 20 

construction CCE models using ANN or MRA to determine the impact that the quantity of data 

utilized for training has on model accuracy. Further, this research investigates a rational 

sampling method for when the entire data population is not utilized. Of the CCE literature 

reviewed there were no reports on the sampling method used for training or testing the model or 

size of the total population of historical projects available.   
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Methodology 

Literature on published CCE models involving ANN and MRA were reviewed. It was 

important to identify only models that were relevant to this study. Three criteria were used to 

ensure this:  

1. the study is related to the construction industry, 

2. input variables are obtainable at the early design stage,  

3. the output variable is a construction cost estimate of the project.  

If the input variables of the data-driven CCE models were simply the bill of quantities then it 

was deemed a ‘bottom-up’ or a detailed estimate of the construction cost and these models were 

excluded from the study.  

A commercial search tool for document content (Bazeley and Richards 2000) was used to 

search for relevant publications, organize and record the analysis. A broad search was conducted 

initially of all the collected publications. The number of case studies was then reduced to only 16 

publications containing 20 data-driven CCE models with the necessary information to conduct an 

effective content analysis. The estimating error of the data-driven CCE models and the number 

of data points used were recorded for comparison and to investigate alignment with literature 

suggestions on this topic.   

Results 

The data gathered from CCE publications are shown in Table 3 and outline the brief 

scope for the types of projects being predicted. Some publications analyzed their database using 

both ANNs and MRA to compare the relative performance of the two different techniques, 

whilst others just performed one technique. The model error was calculated using the MAPE 

method presented in Chapter 3, Equation 1. Where authors had not used this method then our 

research team recalculated the error to enable direct comparisons of performance.  

  



www.manaraa.com

21 
 

Table 3. Construction cost estimating models studied 

CCE literature Data 
points 

ANN 
estimating 
error 

MRA 
estimating 
error 

Brief project scope 

Petroutsatou et al. (2012) 149 4.65% − Tunnels in Greece 
Mahamid (2011) 131 − 13.0% Highway (various sizes) 
Gunduz et al. (2011) 16 5.76% 2.32% Light rail track works in Turkey 
Lowe et al. (2006) 286 −  19.30% Buildings in United Kingdom 
Petroutsatou et al. (2006) 149 − 9.6% Tunnels in Greece 

Kim et al. (2004) 530 3.0% 7.0% 
Residential Buildings in Seoul, 
South Korea 

Gunaydin and Dogan 
(2004) 30 7.0% − 

RC 4-8 story residential buildings 
in Turkey 

Emsley et al. (2002) 288 16.6% − Buildings 
Setyawati et al. (2002) 41 13.4% 9.2% Education Building Construction 
Al-Tabtabai et al. (1999) 40 9.1% − Highway Construction 

Hegazy and Ayed (1998) 18 19.33% − 
Highway Construction in 
Newfoundland, Canada 

Elhag and Boussabaine 
(1998) 

30 17.80% − School Construction 

Moselhi and Siqueira 
(1998) 

34 10.77% 14.76% Steel framed low-rise buildings 

Creese and Li (1995) 12 8.24% − Timber Bridges 

Sanders et al. (1992) 11 − 6.0% 
Urban Highway Bridge widening 
in Alabama 

Bell and Ghazanfer 
(1987) 

174 − 17.0% Highway Construction 
Maintenance projects 

− = data not applicable to that publication 

Since Bell and Ghazanfer (1987) concluded that “larger data-sets tend to reinforce the 

reliability of the model” DOTs investigating the possibility of data-driven cost estimating would 

expect equal if not more training data to be used in the data-driven CCE models for reliability 

and confidence. Figure 5 shows that only three authors in the study population used more than 

the 174 historical construction projects that Bell and Ghazanfer used in their data-driven CCE 

model in 1987. This is surprising given the explosive computing capabilities and data storage 

capacity that has occurred since Bell and Ghazanfer published their results. Of the data-driven 

CCE models studied six authors reached the same conclusion as Bell and Ghazanfer in 1987, yet 

there are still many published models using very few historical construction projects in their 

ANN or MRA analysis.   
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Figure 5. Timeline showing the database used in data-driven CCE models. 

Literature from data-driven CCE models support the hypothesis that lack of data will 

result in unreliable CCE (Bell and Ghazanfer 1987; Elhag and Boussabaine 1998; Setyawati et 

al. 2002; Gunaydin and Dogan 2004; Tatari and Kucukvar 2010; Gunduz et al. 2011) and could 

therefore be a reason for limited industry use. However, findings from the content analysis of the 

20 data-driven CCE models investigated in this study show when the accuracy of the prediction 

model is plotted against the number of data points, in Figure 6 there is little to no trend. The 

arrow shows the direction of the trend expected from literature findings, as the number of data 

points used in the model then the estimating error should decrease. There is an unexplained 

cluster of points in the bottom left of the plot; these case studies are circled and report high 

accuracy with a low number of data points used.  

 

Figure 6. Accuracy of data-driven CCE models published and database size 
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The content analysis results from Figure 6 conflict literature suggestions, whereby 

increasing the database within the CCE models will result in improved reliability and accuracy 

(Bell and Ghazanfer 1987; Elhag and Boussabaine 1998; Setyawati et al. 2002; Gunaydin and 

Dogan 2004; Tatari and Kucukvar 2010; Gunduz et al. 2011). An explanation for this could be 

that some of the published data-driven CCE models have been built for projects of very narrow 

scope.  

Creese and Li (1995) created a model specifically for timber bridges using only 12 

projects. Sanders et al. (1992) limited scope of their data-driven CCE model to bridge widening 

only, using 11 projects. Sanders et al. recognized that the model was only useful for interstate 

bridge widening’s stating that the “model presented in this report obviously has very limited 

application.”  

Gunduz et al. (2011) created a model for light rail track works with only 18 projects and 

achieving nearly 2% prediction accuracy. Validation of the light rail model was based on only 

two projects. Additionally, the light rail model estimated the trackworks portion of the rail 

projects only and did not account for other infrastructure in the project (Gunduz et al. 2011).  

Data-driven CCE models that are only accurate for a very narrow scope of work do not 

provide general utility due to the extremely limited group of projects on which they can be 

applied. Typical DOT projects range in scope from simple to complex and would therefore 

require many different data-driven CCE models to meet their needs. Furthermore, even if the 

models could theoretically be built, many if not most would not contain enough data points to be 

reliable.  

It leads one to suspect that CCE publications using a small number of data points in their 

analysis may not have included the entire population of historical projects for the defined scope 

and purpose of the estimating model. While the literature does not fully explain the rationale for 

not using the entire population, there are potentially two practical reasons for this:  

1. the researchers did not have access to the complete agency project databases, or  

2. the effort of collecting each project was significant and tedious resulting in a small 

number of historical projects used in the analysis.  

Of the CCE literature reviewed there were no reports on the sampling method or size of the total 

population of historical projects used for training or testing the model.  
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Discussion of Results 

Literature study supports the hypothesis that increasing the number of training data points 

in CCE models improves the accuracy and reliability (Bell and Ghazanfer 1987; Elhag and 

Boussabaine 1998; Setyawati et al. 2002; Gunaydin and Dogan 2004; Tatari and Kucukvar 2010; 

Gunduz et al. 2011). However a content analysis of 20 data-driven CCE models found no trend in 

the improvement of performance with increased number of data points. Instead, this study found 

that some estimating models were reporting very accurate results using few data points to train 

their data-driven CCE models. Further analysis revealed that these models may be of very narrow 

scope, limiting the practical application for use by DOTs. 

Published work in the manufacturing (Bode 2000) and aeronautical industry (Rajkumar 

and Bardina 2003) reached the same conclusion; more data improves accuracy of the data-driven 

model. In these fields more data used in training produced improved predictions, however this 

improvement had diminishing returns after a point. Rajkumar and Bardina produced over 7000 

data points in the laboratory for their ANN model studying aerodynamic coefficients.  

The challenge with data collection in the construction industry is the availability of data. 

Historical data used in CCE models comes from completed projects which can cost millions of 

dollars each. The number of projects that can be included in the database is limited to those 

completed each year, which is often quite low due to the high costs of each. More importantly, 

each construction project is normally unique in many ways due to the scale of the transportation 

infrastructure. Unlike products in the manufacturing industry, data cannot simply be regenerated 

in a laboratory thousands of times. The effort required to collect construction project data 

produces the need for a rational data selection method, allowing an individual to accurately 

represent the entire project population with a sample.  

This research next investigates and then proposes a possible sampling method by 

studying the distribution of key attributes in a project population to rationally sample the data. 

The purpose of this is to propose a method going forward for sampling the data to improve 

model credibility. Such a method could increase the application of data-driven CCE models for 

DOTs.  
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Rational sampling method 

Proposed Technique 

A rational sampling method should be used to select data-points for data-driven CCE 

models when the entire population of data is not going to be utilized. This ensures that the data 

sample appropriately represents the population being modeled, and information is not 

unintentionally misleading. The proposed technique is shown in Figure 7. First the population of 

historical projects is defined in terms of scope and size. Defining the scope of the project allows 

readers and practitioners to understand what the data-driven CCE model can be used for (it’s 

purpose). It is also important to understand the sample of projects actually used in the prediction 

model relative to the total population. This is similar to reporting on a non-response rate by 

statisticians when completing surveys (Dillman et al. 2009; Fink 2009). 

 

 

Figure 7. Proposed rational sampling steps 

The distribution of key input variables must also be studied. These are anticipated to be 

input variables that have the greatest contribution to the end accuracy of the model. Not selecting 

a representative distribution of key attributes in the sample may limit the practical application of 

data-driven CCE models for predicting the construction cost of the population in the future.  

Next, if the entire population of data is not going to be used in the CCE model then a 

sample size needs to be nominated. It is justifiable to not use the entire population of data due to 

computing limitations or time and effort restraints to collect the entire database for all attributes, 

especially when the population is large with a broad scope. Finally the distribution of key 

attributes in the population needs representation in the sample to be reflective of the population. 

To demonstrate how this rational method could be applied an illustrative example is provided in 

the following section using an ANN data-driven model. 

Illustrative Example 

Step 1: Define the population: A total of 850 projects were made available to the 

research team from MDT for analysis. This database included all highway projects completed 

from 2007 until 2015. The population was further defined to pavement preservation projects 
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only. This left a total of 431 historical projects available. Five consecutive years of projects in 

the design phase from 2009-2013 were selected and the population further defined to chip seal, 

thin lift overlay or mill & fill projects, the three main major work-types, all less than $5M in 

value. A total of 189 projects remained for analysis – this was our research population of data. 

Step 2: Distribute key input attributes: The base ANN model developed in Chapter 3, 

with a database of 189 projects defined above, was trained with a randomly selected 80% of the 

projects. This trained model was then tested with the remaining 20% of projects, these test 

projects were not used to train the model. From the tested model two of the input variables were 

deemed to be the most sensitive to the construction cost, this was the highway classification and 

length of the projects. The distribution of these two attributes across all 189 projects was 

analyzed visually and is shown in Figure 8a.  

Table 4. Input variables used 

Proposed input attributes 

Urban or rural project 
Site topography (steep, flat or undulating terrain) 
Construction on Native American Reservations 
Start and End Stations, Length and Width*  
Number of bridges in scope 
Design Average Annual Daily Traffic (AADT) 
Highway Classification* 
Typical Section (depths of surfacing and aggregate) 
Traffic Control - closures or detours 
Curb & Gutter and Sidewalk  
Contract Time 
Bridge deck areas 
Geotechnical - subsurface & slope recommendations 
Extent of Utility relocations and costs 
*denotes attributes analyzed 

Step 3: Represent the population in the sample:  A test sample of 38 projects (accounting 

to 20% of the database) was separated from the 189 projects in the database. The 38 projects 

were selected and removed by iteratively selecting projects until distribution of the two key 

attributes (from Step 2) aligned with the distribution in the entire population. This left 151 

projects available to train a model. Selecting test data reflective of the population in this 

proposed method will test the true performance of the cost estimating model against its intended 

end-use.  
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Figure 8. Distribution of Sample I, II and III based on two key input variables 
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Next, a control sample of 85 projects was selected from the remaining 151 available 

projects in the training data-set. This was completed iteratively in order to match the distribution 

of highway classification and length from the population in the control sample. The scale match 

of the distribution for projects in the control sample against the population is shown in Figure 8a.  

For the purposes of validating this method two additional samples of 85 projects were 

selected from the 151 training projects, these are Sample’s I and II. In each of the samples one of 

the two key attributes were deliberately misrepresented relative to the control sample. The 

highway classification was misrepresented in Figure 8b (Sample I) and the lengths of the projects 

were misrepresented in Figure 8c (Sample II) relative to the distribution in the control sample.   

Results:  The 14 attributes from the 151 remaining historical projects were then used to 

train the ANN model against the actual construction costs from the database. Two different 

artifical neural network configurations were trialed. The Generalized Regression Neural Network 

(GRNN) was found to perform superior to the Multi-Layer Feedforward (MLF) network also 

available in the software. The  historical projects not included in the training of the artificial 

neural network were then tested in the model. The plot of predicted construction costs versus the 

acual construction cost for the 38 test data-points is shown in Figure 9.   

 

Figure 9. Validating the artificial neural network with the test data 
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The MAPE for the test 38 projects was 22.9%. This is well within the expected accuracy 

of the construction estimate at the planning stage suggested in the AASHTO Practical Guide to 

Cost Estimating (2013) where -40% to +100% is accepted at the conceptual development stage, 

shown in Table 1 (Chapter 2). Further improving the accuracy of this model was not the goal 

here, so research into sampling this population of 151 training projects continued. A separate 

model was trained and tested for the Control Sample, Sample I and Sample II. The same 38 

projects were used to the test the error of these trained models.  

Results of all four ANN models created are shown in Table 5. It was not surprising that 

no single sample out-performed predicting the construction costs of the 38 test projects than 

using the entire population (151 projects) to train the model. This is in agreement with literature, 

from the construction industry and other fields, that states the use of more data improves the 

accuracy and reliability of the model (Bell and Ghazanfer 1987; Setyawati et al. 2002; Gunaydin 

and Dogan 2004; Tatari and Kucukvar 2010; Gunduz et al. 2011; Rajkumar and Bardina 2003; 

Bode 2000).  

Table 5. Error in the testing data 

Sample MAPE with the test data 

Entire Population (151 projects) 22.9% 

Control Sample (85 projects) 32.5% 

Sample I (85 projects) 38.0% 

Sample II (85 projects) 40.5% 

 

Sample I and Sample II also performed notably worse at predicting the construction cost 

in comparison to the Control Sample. On visual inspection of Sample II (Figure 8c) the 

distribution of ‘length’ attributes was much more significantly misrepresented than the ‘highway 

classifications’ in Sample I (Figure 8b) as the extreme highway length values (high and low) 

were truncated. This only resulted in a small increase in the estimating error from 38.0% to 

40.5%. This finding suggests that some attributes are more sensitive to sufficient representation 

in the sample database and do not need to exactly match that of the population. Further research 

needs to be completed to find a relationship between the level of representation in the sample 

required to appropriately predict the construction cost without using the entire population of data.  
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Other industries are focusing on ‘big-data’ for the data-analytics and decision analysis. 

The transportation industry is currently lagging behind in its use of historical data, specifically in 

the area of cost estimating. Data-driven techniques for CCE of highway projects have proven 

results in the literature. However, when DOTs are searching for published data-driven CCE 

models they need to be aware of the limits to their practical application; a data-driven CCE 

model may appear to perform well but without rational sampling of the data and suitable scope 

definitions a DOT cannot be confident in these techniques.  

Conclusion 

Literature from both construction and manufacturing industries support the concept that 

more data increases the accuracy and reliability of data-driven CCE models (Bell and Ghazanfer 

1987; Setyawati et al. 2002; Gunaydin and Dogan 2004; Tatari and Kucukvar 2010; Gunduz et 

al. 2011, Bode 2000; Rajkumar and Bardina 2003). Despite this widely held belief, a content 

analysis of 20 data-driven CCE models revealed that some models had a very low prediction 

error despite using few projects to train the model. A reason for this result is the narrow scope of 

the projects included in the database and lack of test data. These two attributes make the use of 

data-driven CCE models undesirable for use by DOTs.  

Despite the small databases in the CCE models, the literature has remained silent on 

methods used to select the data used. To help improve the validity of CEE models for future 

industry use, this paper suggests a rational method to effectively represent a database without 

using all data points. An illustrative example using artificial neural networks was provided to 

demonstrate how such a method would be applied in practice. It was found that key attributes 

need sufficient representation in the sample of data.  

Regardless of the vast improvement in computing technologies over the past 30 years, no 

great advancement in CCE accuracy has been made, preventing DOTs from using these 

technologies within their work. This paper found contributing reasons for this decision to be that 

many published data-driven CCE models have a very narrow scope, lack of confidence in the 

sizes of some databases used and no sampling method used for selection of projects.  
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CHAPTER 5. QUANTIFYING EFFORTS FOR DATA-DRIVEN 
CONCEPTUAL COST ESTIMATING FOR HIGHWAY PROJECTS 

Gardner, B., Gransberg, D. D., and Jeong, H. S. (2015). “Quantifying Efforts for Data-Driven 

Conceptual Cost Estimating For Highway Projects.” To be submitted to the ASCE Journal of 

Construction Engineering and Management. 

Abstract 

A modern dilemma has emerged in light of ever improving technological advances; 

enlarged data-collection efforts do not yield a proportional increase in knowledge. Storing more 

data than is necessary, without receiving any useful additional benefit, is not only resource 

intensive but also requires additional funding to collect and manage it. Data-driven models using 

historical project attributes to estimate future construction costs, such as multiple-regression 

analysis and artificial neural networks are both proven techniques found in the literature that 

highway agencies could adopt for conceptual estimating. This research noted that the literature 

using these techniques have been solely focused on estimating model performance with little to 

no focus on the level of effort required to conduct the conceptual estimate. It is commonly 

believed that using more input data enhances estimate accuracy. However, this paper will test the 

concept that using more input variables than necessary in the conceptual estimate 

overcomplicates the conceptual model without a commensurate increase in accuracy. Conceptual 

estimates using the minimum amount of input data to produce an estimate with a reasonable 

level of confidence is more cost effective than current practices. It allows designers and 

estimators to focus their time on advancing project development, instead of investing time into 

projects that may never advance past the initial conceptual stage. Furthermore, reducing data 

requirements saves highway agencies time and money on storage of unnecessary project 

information. This paper quantifies the effort expended to undertake estimates for both artificial 

neural network and multiple-regression analysis models used for the conceptual estimate. The 

paper concludes that input variables which have a large influence on the final predicted cost and 

require a low amount of effort are desired in data-driven conceptual cost estimating models. 

Introduction 

In public works, the budget for a project is often established at a point in project 

development where the estimator has the least amount of design detail from which to compute an 



www.manaraa.com

32 
 

estimate (Bode 2000). Taking federally-funded highway projects as an example, the budget is 

formally set when the project is assigned a federal project identification number (PIN) and 

included in the STIP (FHWA 2015; Anderson et al. 2007).  The estimate is usually used during 

early planning stages to conduct initial feasibility studies, and both engineers and planners 

realize that the accuracy of the initial cost estimate is a function of the level of design detail 

available at the time of the estimate. To account for the anticipated change in project scope as the 

development process proceeds, a standard contingency based on a percentage of the total 

estimate is added (Minassian and Jergeas 2009). This kind of estimate is termed a ‘top-down’ 

estimate because it relies on parametric cost factors such as lane-miles, location, project type, 

etc. rather than a ‘bottom-up’ estimate whose basis are the quantities of materials needed on the 

project (Kim et al. 2012).   

The conundrum faced by engineers in public works is that in order to receive the 

authorization to expend funds to advance the project to completion the official budget is based 

on a figure derived with the least amount of project-specific technical information (Bode 2000; 

FHWA 2015). If the figure is too conservative, the project may not be receive authorized funding 

necessary to advance to the next preliminary engineering stage. As a result, it becomes important 

to take the initial cost estimate seriously and utilize the available information that has the highest 

influence on the bottom-line while not allocating precious time and resources to a project that 

ultimately will not advance. Additionally, the time period to conduct the estimate is typically 

limited in the feasibility stage (Gunduz et al. 2011), but the estimate requires sufficient accuracy 

for benefit-cost analysis and prioritizing budgets (Anderson et al. 2007). Therefore, the objective 

of this paper is to explore a solution that can be used to complete critical initial estimates with 

high impact data that requires the minimum level of effort for the estimator to obtain. 

Conceptual Cost Estimating Effort at Highway Agencies 

Highway agencies cannot afford to over-invest their design and planning resources in 

projects at the conceptual stage. If less effort can be expended at the conceptual stage, then an 

estimator’s time can be better applied in the later design estimating stages shown in Figure 1 

(Chapter 1). Any investment in the project at the conceptual stage could be rendered worthless if 

a project is not selected for further development following a benefit-to-cost analysis or a needs 

assessment. In the context of structural steel buildings only 15 percent of those that reach the 

conceptual stage ever get constructed (Moselhi and Siqueira 1998).  
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No matter the CCE technique employed by highway agencies or suggested in the 

literature, a particular level of project scope definition (or conceptual design effort) is required in 

order to conduct a cost estimate. Sanders et al. (1992) observed this balancing act between 

efforts expended and estimate accuracy, stating “there is an inverse relationship between the 

accuracy of an estimate and its preparation cost. At some point, increased accuracy cannot justify 

the additional costs incurred.” The earlier that the initial estimate is developed, the lower the 

level of effort expended on project definition required for CCE, which translates into lower costs 

and fewer resources. This means that estimators and designers can focus their efforts on projects 

which have advanced past the planning stage and are likely to reach construction.  

Data-driven CCE Models – Prior Studies 

CCE techniques reviewed in this research include both ANN and MRA models. The 

benefit of data-driven techniques is the ability to use historical project information for 

forecasting and the speed at which this can be achieved. Gunduz et al. (2011) recognized this 

stating “reliable cost estimates are required within a very limited time period at the feasibility 

stage,” and the research in their paper concentrated on the use of ANN and MRA models to 

produce fast and accurate results.  

Performance of data-driven CCE models is subject to variations in model architecture and 

parameters; this includes the input variables used, number of hidden layers and nodes in the 

ANN model, and data-set size. The effects of model architecture and parameters have been 

studied in data-driven CCE models published in the literature (Setyawati et al. 2002; Mahamid 

2011; Petroutsatou et al. 2012). A detailed content analysis on the number of input variables is 

completed in the next section.  

Literature analysis 

Previous authors of data-driven CCE model research have remained silent on the effort to 

collect, store and use databases to conduct the cost estimates. As a result, this research analyzed 

the data-driven CCE models published in the literature to observe how many input variables are 

being used and resultant error. Collection and storage of data from historical projects requires 

time and resources of which highway agencies have a limited quantity. Further cost influencing 

information gathered later in the project life-cycle can be included in more detailed ‘bottom-up’  
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design stage estimates. The literature analysis was a starting point of this research to see if 

additional inputs improve estimating accuracy.  

The same 16 publications on data-driven CCE models from Chapter 4 were studied. From 

each of the publications both the MAPE and the number of input variables used to produce their 

best performing model was collected. The results of the content analysis are shown in Table 6.  

Table 6. Construction cost estimating models studied to understand input variables 

Author Input 
Variables 

ANN 
estimating 

error 

MRA 
estimating 

error 
Brief Project Scope 

Petroutsatou et al. 
(2012) 5 4.65% − Tunnels in Greece 

Mahamid (2011) 9 − 13.0% Highway (various sizes) 
Gunduz et al. (2011) 17 5.76% 2.32% Light rail track works in Turkey 
Lowe et al. (2006) 12 − 19.30% Buildings in UK 
Petroutsatou et al. 
(2006) 5 − 9.6% Tunnels in Greece 

Kim et al. (2004) 9 3.0% 7.0% Residential Buildings in Seoul, 
Korea 

Gunaydin and Dogan 
(2004) 8 7.0% − 4-8 story residential buildings in 

Turkey 
Emsley et al. (2002) 5 16.6% − Buildings 

Setyawati et al. (2002) 2 13.4% 9.2% Education Building 
Construction 

Al-Tabtabai et al. (1999) 9 9.1% − Highway Construction 
Hegazy and Ayed 
(1998) 10 19.33% − Highway Construction in 

Newfoundland, Canada 
Elhag and Boussabaine 
(1998) 4 17.80% − School Construction 

Moselhi and Siqueira 
(1998) 4 10.77% 14.76% Steel framed low-rise buildings 

Creese and Li (1995) 3 8.24% − Timber Bridges 

Sanders et al. (1992) 10 − 6.0% Urban Highway Bridge 
widening in Alabama 

Bell and Ghazanfer 
(1987) 5 − 17.0% Highway Construction 

Maintenance projects 
Note: − = indicates that data is not applicable to that publication 

The results from the literature content analysis found in Figures 10a and 10b show that 

previous publications are achieving lower error through more input variables. Both plots in 

Figure 10a and 10b show diminishing returns with a smaller reduction in error as each input 
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variable is added, this is highlighted by the best fit curves being negative power curves. The 

relationship is much stronger with the MRA models (Figure 10b) in the literature with the power 

curve coefficient of determination (R2) value being 0.7211. When the obvious outlier in the ANN 

group (Figure 10a) is removed then the R2 value in that plot increases from 0.1462 to 0.335. 
 

  

Figure 10. Literature analysis of inputs versus error 

A weakness of this conclusion is that the literature is for projects of many different 

scopes. Additionally, none of these past studies have compared their input variables with the 

perceived level of effort to obtain them for every project, meaning that effort required to 

populate the model and its performance have not been directly compared. This leads one to infer 

that the results reported in the literature contain an underlying assumption that each input 

variable requires equal estimating effort. Therefore, that in the body of knowledge will be filled 

by the results of this chapter, which will specifically quantify input variable effort and prove that 

not all input variables require the same level of effort to compute.     

The requirement to minimize CCE effort is also recognized in other industries outside of 

construction. Verlinden et al. (2008) created an ANN to calculate the cost of sheet metal 

manufacturing for customers; the research recognized the necessity to provide customers of sheet 

metal a swift quotation, albeit at the cost of possibly reduced accuracy. In another study, 

Walczak (2001) created an ANN to predict a foreign exchange rate. Walczak’s study found there 

was no need to utilize the entire available database and that only a few years of data was 

necessary to provide reasonable confidence. Walczak concluded that this would have a 

significant effect on model development cost savings, where “the cost is not only financial, but 

also the development time and effort.”(Walczak 2001).  
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Research objective 

This paper proposes a new CCE objectives hierarchy, illustrated in Figure 11, to evaluate 

the performance of data-driven CCE models. Previous data-driven CCE models are focused on 

the prediction accuracy (Objective 1), but this research investigates the effort expended 

(Objective 2) in gathering the input information for the models.  

 

 

Figure 11. Proposed dual-objective hierarchy tree for conceptual cost estimates 

The objective of this paper is to evaluate the effort expended for data-driven CCE models. 

Specifically the paper focuses on two questions: 

1. Can a framework be created to select inputs that help meet the dual-objective goal of 

maximum performance with minimal effort? 

2. Is there an optimum number of input variables that highway agencies should be 

collecting to minimize the effort for data-driven CCE models?  

The outcomes of this research should help both researchers and practitioners to focus on both 

objectives during the CCE stage, allowing them to estimate the projects construction cost at an 

early stage of project development with the least amount of effort but with the optimal 

performance.  

Research Methodology 

To validate the input selection framework and determine if an optimum level of input 

variables exist a combination of perceptional survey data was used with real project data to 

predict the construction cost. The research steps are shown in Figure 12 below. In step 1, a 

survey was conducted to grasp perception on the level of effort required for different inputs to 

the conceptual estimate. The dual-objective input selection method, proposed as part of this 

research, was then utilized in step 2. Next, the estimating error for each model was recorded 

using the proposed input selection order (step 3a) and then it was repeated using the input 

selection order in reverse (step 3b). Finally step 4 compares the cumulative perceived effort for 
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each construction cost estimate to the estimating error achieved. In this step the proposed input 

selection method (step 3a) is compared to completing the task in reverse order (step 3b) in order 

to validate framework effectiveness.  

 

Figure 12. Research steps 

Survey 

A survey was conducted at MDT to understand the perceived level of effort required to 

estimate the construction cost of a project at the conceptual stage. Firstly, two days of interviews 

at MDT established the key attributes of a project that influence the construction cost to aid the 

survey development, this was discussed in the base-model development (Chapter 3). Following 

these interviews, and a review of literature, 29 variables were identified that have an influence on 

the construction cost of MDT’s highway projects, these are shown in Table 7. The research team 

then assigned the attributes into one of three categories: 

1. Roadway: an attribute associated with information about the proposed project location. 

2. Design: an attribute determined during the design process. 

3. Construction administration: attribute is related to the construction activity. 

These categories were selected to reflect the location where the data was being received 

from at MDT. For example the majority of roadway characteristics were generally sourced from 

the Data and Statistics Bureau at MDT which store Geographical Information Systems (GIS) on 

roadway attributes. 
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Table 7. Cost influencing attributes identified at MDT 

Design related attribute Roadway information attribute 

1 Design AADT 19 Urban or rural project  

2 Design speed 20 Construction on Native American 
Reservations  

3 Start and end stations, length and width 21 Site topography  

4 Intersection signalization and signage 22 Existing surfacing conditions and depths  

5 Horizontal and vertical alignment 23 Number of intersections in project  

6 Extent of changes to the existing 
intersections 24 Number of bridges in the project scope 

7 Typical section  Construction administration attribute 

8 Curb, gutter and sidewalk  25 Traffic Control - closures or detours  

9 Bridge type and complexity  26 Environmental permitting requirements- 
wetlands  

10 Volumes of excavation  
and embankment  27 Letting Date  

11 Geotechnical - subsurface & slope 
recommendations  28 Context sensitive design issues, controversy  

12 Bridge deck area  29 Contract time  

13 Hydraulic recommendations and culverts    

14 Storm sewer extents    

15 Bridge span lengths   

16 Foundation complexity of the bridge   

17 Right-of-way acquisition and costs   

18 Extent of utility relocations and costs   
 

Survey respondents were asked, amongst other questions, to answer the following on 

each of the 29 attributes identified: 

1. rate the typical effort required to compute or identify this variable, and  

2. how influential do you believe this variable is on the construction cost of a project? 

The entire survey template is shown in Appendix C. Questions were designed with an ordinal 

(categorical) scale where respondents are required to select the most suitable answer as shown in 

Figure 13 (Fink 2009; Fowler 2009).  



www.manaraa.com

39 
 

 

Figure 13. Ordinal scale used for the two survey questions 

The survey was distributed at MDT through an email link to all 84 preconstruction 

personnel that were deemed suitably qualified to respond. A total of 35 responses were received 

with four of these excluded as non-responses. This resulted in a 37% response rate. Responses 

were received from all five bureaus and from a large range of job titles. Whilst there is “no 

agreed-upon standard for a minimum acceptable response rate” (Fowler 2009) the researcher 

team were satisfied that the 37% response rate was reflective of the entire population.  

Input variable selection 

To meet the dual-objective goal during CCE it was proposed that input variables be 

selected starting with those that require a low level of effort to compute or identify but also have 

a high influence on the construction cost of the project. This is shown in Figure 14 below with 

the input variables suggested to be selected in the bottom right hand quadrant.  

 

Figure 14. Selecting input variables to meet the dual-objectives of CCE 
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To validate this selection process the research team combined the perceptional survey 

results with performance of a data-driven CCE model created specifically using projects that the 

survey respondents design and manage at MDT. Two data-driven CCE modeling techniques, 

ANN and MRA, were utilized with the database developed in Chapter 3 to predict the 

construction costs of projects. Input variables were systematically added to the data-driven CCE 

model starting with those in the bottom right quadrant of Figure 14 to meet the dual-objectives of 

the main CCE goal. Further inputs were added based on their distance from the bottom right 

quadrant in Figure 14, this is explained in more detail later on in this paper. In each of the 

models the performance and total perceived effort from all input variables used were recorded.  

Results 

Survey response 

The average results of the survey from 31 respondents are shown in Figure 15, the 

numbers relate to the 29 attributes from Table 7. Respondents rated the effort on a 1-3 ordinal 

scale whilst the influence of this variable on the construction cost was rated on a 1-4 ordinal 

scale, these scales are shown in Figure 13. As such quadrants were arbitrarily assigned on both 

scales to visually divide up the results and aid the input variable selection process. The units on 

both axis correspond to the ordinal response scale from Figure 13, they are referred to as 

“points” from here on.  

Visually, there are a number of interesting results which can be observed in Figure 15. 

Firstly, only 5 of the 29 attributes shown in Table 7 fall in the bottom right quadrant of the plot: 

attributes MDT perceive as requiring a low amount of effort to collect which also have a high 

influence on the construction cost of the project. It was not a surprise that three are roadway 

characteristics, easily identified once a project has been selected and its location confirmed. 

These characteristics include whether the project is going to be in an urban environment, the 

topography of the road and the number of bridges within the limits of the project. Bridge deck 

area was the only design factor identified in the bottom right quadrant.  
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Figure 15. Results of MDT cost estimating survey 

Secondly, all the attributes in the top right quadrant of the Figure 15 are design factors. 

This is intuitively logical as design requires significant effort to be expended and the outcome 

should have a large effect on the construction cost. Finally, very few variables occupy the top left 

quadrant. Those that do occupy this quadrant are bordering other quadrants inferring that any 

attribute requiring a significant amount of effort to be expended by MDT is going to have a 

significant influence on the construction cost of the project. This observation is also reinforced 

by the fact that two-thirds of all variables are in the bottom left or top right quadrant (i.e 

variables are either low-effort/low-influence or high-effort/high-influence variables). 

Case-study 

The findings from the survey were used to validate the dual-objective input variable 

selection method proposed as part of this research. The research team proceeded to build a data-

driven CCE model, which has the least amount of effort with suitable performance. As such as 

many of the 29 attributes were included in the model, one at a time, starting with the variable 

closest to the most preferred to the least preferred variables (as shown in Figure 16). The formula 

to calculate each distance was based on the Euclidean distance, and shown in Equation 2 

(Danielsson 1980). 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷 𝐷𝐷𝑡𝑡 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖 𝐷𝐷𝑛𝑛𝑖𝑖𝑖𝑖𝐷𝐷 (𝑖𝑖𝑡𝑡𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷) = �(𝑥𝑥𝑖𝑖 − 𝑀𝑀)2 +  (𝑦𝑦𝑖𝑖 − 𝐵𝐵)2                                                (2) 

where, 

𝑥𝑥𝑖𝑖 = the average perceived cost influence from the survey. 

𝑀𝑀 = 4, the maximum construction cost influence based on the ordinal survey rating and the ideal 

value as shown in the survey questions (Figure 13). 

𝑦𝑦𝑖𝑖= the average perceived effort from the survey. 

𝐵𝐵 = 1, the minimum effort rating based on the ordinal survey rating and the ideal value as shown 

in the survey questions (Figure 13). 

𝐷𝐷 = the input attribute being measured, ranges from 1 to 29. 

 

 

Figure 16. Preference for selecting input variables 

 

The research team then used the base ANN with 17 input variables. In this chapter the 

database is tested with both ANN and MRA models. Because the perceptive survey for effort and 

cost influence was created for generic project types, some of the project attributes were not 

relevant to pavement preservation projects. As a result, 13 of the 17 input variables were chosen 

as the perceived effort would have been most relevant to pavement preservation were selected.  

These were selected based on guidance from MDT personnel and the ranked order is shown in 

Table 8 from the most preferred input variable to the least preferred. 
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Table 8. Input variables selection order and distance from ideal input 

Proposed input variable 
selection order 

Average perceived 
influence 
(points) 

Average perceived 
effort 

(points) 

Distance to  
ideal input (points) 
Refer to Equation 2 

19. Urban or rural project 3.48 1.10 0.56 
21. Site topography (steep, 
flat or undulating terrain) 3.26 1.29 0.80 

3. Start and End Stations, 
Length and Width  2.97 1.71 1.25 

1. Design AADT 2.74 1.29 1.29 
7. Typical Section (depths of 
surfacing and aggregate) 3.19 2.03 1.31 

2. Design speed(s) 2.67 1.16 1.34 
4. Intersection signalization 
and signage 2.87 1.90 1.44 

25. Traffic Control - closures 
or detours 2.84 2.00 1.53 

8. Curb & Gutter and 
Sidewalk  2.97 2.13 1.53 

29. Contract Time 2.45 1.58 1.65 

27. Letting Date  2.35 1.29 1.67 
11. Geotechnical - subsurface 
& slope recommendations 3.39 2.65 1.76 

6. Extent of Utility relocations 
and costs 3.26 2.71 1.86 

 

Input variables were added by selecting them in the order starting with the shortest 

distance from the ideal input variable to the largest distance. The average survey results for the 

influence and effort are shown in Table 8 along with the calculated distance to the ‘ideal input 

variable’ shown in Figure 16. Each time a new input variable was added to the model the MAPE 

of the model with the test data was recorded. To verify the usefulness of the input selection 

method the process was repeated in the reverse order (starting with the largest distance from the 

ideal input variable). 

To be able to compare the results from all the models, the same 151 projects selected in 

Chapter 4 were used to train each model and the same 38 projects were used to test the model 

and calculate the MAPE. The 38 projects were selected through the sampling methodology 

developed in Chapter 4.  
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ANN Results 

A commercially available ANN modelling software package was used to train and then 

test the database. Initially, only one input variable with the shortest distance to the ‘ideal input 

variable’ shown in Figure 16 was used to train and then test the first model. Input variables were 

then added to the model one at a time, getting further from the ‘ideal input variable’. Each time 

the MAPE and cumulative effort points of the prediction model was recorded. The process was 

then repeated until all 13 input variables were included in the ANN model. The process was then 

conducted in reverse order by adding input variables in the opposite fashion. Figure 17 illustrates 

the results of each approach. 

 

 

Figure 17. ANN performance and effort expended 

 

Figure 17 shows that when input variables are added in the order suggested by this 

method then the model can more quickly reach reasonable accuracy with less effort. This method 

minimized the number of input variables required to achieve the lowest possible MAPE. Once 

the first 6-8 variables, from Table 8, were added to the model then adding further inputs yielded 

no further reduction in estimating error. The corresponding model reached around 25% MAPE 

estimating error with a cumulative effort of 7.5 points. With the reverse order of input variable 

selection a comparable level of error was not reached until around 17.5 to 20 points of effort. 

This is over twice the level of estimating effort for the same performance. Both methods show 
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that there is a point where adding additional input variables, or expending more effort, results in 

diminishing returns and little or no improvement in performance in predicting construction costs 

for the additional effort. When the point of diminishing returns is reached the overall goal of the 

estimating model is reached: maximum performance with minimal effort. This also effectively 

debunks the notion that increasing the number of input variables will increase the accuracy of the 

estimate. 

The authors speculate that selecting input variables which require a low level of effort 

essentially means that variable is known to a high degree of confidence at the early estimate 

stage. Two examples are the 'length' of the project and if the project will be in an 'urban or rural' 

setting. These two variables both require a low level of effort, thus are known to a high degree of 

confidence at the early stage. Because these two variables were also perceived by MDT as 

having a high influence on the construction cost then the input selection process proposed in this 

research picked these two variables amongst the first 6-8 variables. 

On the contrary, design variables require a high level of effort at the early stage. 

Although they have high influence on the construction cost many were excluded from the first 6-

8 variables. Most design factors do have a perceived high impact on the construction cost, but, at 

the early stage there is a low level of confidence with those numbers. Two such examples are the 

geotechnical complexities and utility replacements required. At the early stage highway agencies 

only have a very vague estimate of those variables, thus the confidence in the top-down number 

is very low at the conceptual stage. However, it is recognized that their designed outcome does 

have a significant impact on the cost. The data inputs for design variables in the conceptual 

estimating model are sourced from project information at the early stage, thus they are not inputs 

known to a high level of confidence and contain plenty of variability from this initial estimate to 

the final estimate. This is unlike variables such as the 'length' or 'urban/rural' input variables 

which are known to a high level of confidence at the early stage and also have a high impact on 

the construction cost.  

MRA Results 

The same database was next used with commercial software for MRA with a linear 

assumption. When the process was repeated with MRA the rational selection method proposed in 

this research also proved successful to meet both objectives, as seen in Figure 18. It is evident 

that the ANN model’s performance was superior to the MRA, 25% error using ANN compared 
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to 50% with MRA. These errors are both within the range suggested by the AASHTO Practical 

Guide to Cost Estimating (2013) at the planning stage. The superior performance of ANN is in 

agreement with several data-driven CCE models found in the literature (Petroutsatou et al. 2012; 

Kim et al. 2004; Moselhi and Siqueira 1998). However, this conclusion is not universal in the 

construction literature with some authors reporting the opposite findings (Gunduz et al. 2011; 

Setyawati et al. 2002). The ongoing debate with both techniques was the reason that this chapter 

differed from Chapters 5 and 7 by testing the database with both MRA and ANN in order to 

contribute to other literature findings.   

 

 

Figure 18. MRA performance and effort expended 
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It is interesting to note that with the MRA model when using the reverse order of input 

variables never reaches the optimal prediction accuracy of around 50%. Also the regression 

analysis actually performs better with fewer input variables and at 10 input variables, the MAPE 

starts increasing. Without a rational input variable selection method, such as trial and error 

commonly employed in the literature (Hegazy and Ayed 1998; Kim et al. 2004), one may 

conclude that a given set of data is not capable of predicting the construction costs to reasonable 

accuracy.  

Discussion 

The research in this paper has shown that data-driven CCE models do not need to include 

all project attributes to predict the construction cost to reasonable accuracy at an early stage of 

project development. If highway agencies are going to employ data-driven methods for CCE 

then the implications of this research highlight: 

1. A rational input selection method, such as the one suggested in this paper, can be used to 

yield suitable input variables with low effort and contribute to acceptable performance. 

2. Once highway agencies are confident in the input variables required to estimate the 

conceptual cost of projects, the collection of further information is unnecessary. It only 

consumes data storage space and requires time/effort from personnel whose efforts could 

be better applied elsewhere. 

3. The results imply that suitable confidence in estimating the conceptual costs of projects 

can be achieved with lower project definition if the correct input variables are selected.  

The final implication of this study is the most important: at the conceptual stage of a 

project life-cycle, an early estimate with readily available input variables can achieve satisfactory 

accuracy. This is better than a slightly more accurate result at a later stage of design 

development. It should be noted that this research is based on the analysis of perceptional data 

from a single DOT agency and as such, its conclusions cannot be generalized without regard to a 

specific agency’s attribute impact and effort perceptions being checked. Nevertheless, the 

overarching concept of using the high impact/low effort variables should be true for most, if not, 

all public transportation projects.  
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Conclusion 

ANN and MRA models constructed for this research both reached the goal with the dual-

objectives of low effort and high accuracy faster using the input selection method proposed in 

this research. Adding further input variables using either model technique resulted in diminishing 

returns of the model performance. Findings from this research have positive implications for 

practitioners willing to employ data-driven conceptual cost estimating techniques.  

The paper’s primary contribution for both researchers and practitioners is to highlight for 

the first time that while increasing the number of input variables in an early estimate may appear 

to enhance estimate accuracy on an intuitive basis, this is not necessarily true. The MDT case 

study showed that for both the ANN and MRA approaches that adding detail to the model 

reached a point of diminishing returns at roughly 6 to 8 high impact/low effort variables. 
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CHAPTER 6. STOCHASTIC COST ESTIMATING OF HIGHWAY 
PROJECTS AT THE CONCEPTUAL STAGE USING BOOTSTRAP 

SAMPLING 

Gardner, B., Rueda, J., Gransberg, D. D. (2015). “Stochastic Cost Estimating of Highway 

Projects at the Conceptual Stage using Bootstrap Sampling.” To be submitted to the ASCE-

ASME Journal of Uncertainty and Risk. 

Abstract 

Conceptual cost estimating is typically completed early in the project life-cycle when 

very little design work has been completed. Because little information is known at this early 

stage, conceptual estimates usually deviate substantially from actual construction costs. The 

conceptual estimate is not expected to be highly accurate; however when expressed as a 

deterministic value, it often leads to a false inference of accuracy by those not familiar with the 

vagaries of conceptual cost estimating, making it difficult for the agency to explain cost growth 

as the project proceeds through the development process. Communicating the conceptual 

estimate stochastically allows the agency to produce a probability distribution of the likely 

construction cost and address the level of confidence it has in the given estimate. Named 

probability distributions are readily available for developing a stochastic estimate on many 

commercial software’s to communicate uncertainty. However, instead of fitting available 

distributions, this research generates an empirical distribution to express a range in construction 

costs for individual projects. Creating empirical distributions eliminates assumptions required for 

selecting an existing distribution. This paper describes the development of a stochastic data-

driven model, which combines artificial neural networks and bootstrap sampling to estimate 

construction costs and their associated uncertainty at the conceptual stage. This study used 189 

highway projects to train and test the estimating model.  

Introduction 

The difficulty with conceptual cost estimate accuracy is demonstrated in the AASHTO 

Practical Guide to Cost Estimating (2013), which cites the accepted uncertainty of the early 

estimate in a range of -40% to +100% from the initial cost estimate to the final construction cost. 

This corresponds to a project scope definition of 1-15%, as shown in Table 1 (Chapter 1). That 

AASHTO publication also acknowledges the difficulty in quantifying uncertainty associated the 
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cost at the conceptual stage. It is known that many highway agencies experience substantial cost 

growth from this initial estimate to the final construction cost (Flyvbjerg et al. 2002; 

Schexnayder et al. 2003; Chou et al. 2006). 

Reflecting the construction cost as a point estimate (i.e. a given number) does not portray 

the estimator’s confidence, or lack thereof, in the estimate, nor does it indicate the potential for 

cost growth. Therefore, those using the estimate in the planning and programming process may 

be over confident in its accuracy. The following section discusses the bias and optimism 

associated with point estimates, it then goes on to discuss the benefits of reflecting the 

construction cost stochastically.  

Optimism and bias associated with conceptual estimates 

Bias from the estimator and the tendency to be over-optimistic in construction costs has 

been found to directly attribute to construction cost growth. Bias and over-optimism was 

discovered as one of the 18 primary factors contributing to construction cost escalation by Shane 

et al. (2009). Over-optimism was “often viewed as the purposeful underestimation of project 

costs to ensure that a project remains in the construction program” (Shane et al. 2009). In that 

study interviews were conducted with over 20 public highway agencies to identify the key 

factors which led to highway construction cost escalation.   

There is a proven link in the literature for which an optimistic estimate of construction 

cost can lead to inadequate design funds for a project and further exacerbate construction cost 

growth. Typically, the design budget is established as a percentage of the initial construction cost 

estimate (Jeong and Woldesenbet 2012). Therefore if the construction budget is optimistic (low), 

so too is the design budget. Gransberg et al. (2007) investigated the relationship between the 

design budget and cost growth from the initial estimate. The study established that, up to a point, 

the greater the percentage assigned to design, the lower the cost growth measured with respect to 

the conceptual estimate. It therefore follows that an optimistic design budget, assigned as the 

result of an optimistic construction cost estimate, will more likely lead to cost growth from the 

initial estimate due to design activities being underfunded.  

In the study by Flyvbjerg et al. (2002) it was found with overwhelming statistical 

significance that cost estimates presented at the pre-design stage are systematically and 

intentionally misleading, and not caused by error. The study by Flyvbjerg et al., discussed in 

Chapter 1, included 258 transportation infrastructure projects from different historical periods, 
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geographical regions and project types. Three main reasons for the statistical significance were 

investigated; this was: economic self-interest, appraisal-optimism, or misleading forecasts for 

political reasons to get projects started. The conclusion of that research was that the pre-design 

cost estimates were deliberately low to get projects started and hence the reason for 9 out of 10 

projects experiencing cost growth.   

This paper proposes the use of data-driven methods to produce stochastic estimates and 

increase the level of cost transparency. Using historical project data to forecast costs and assign 

contingencies removes any psychological elements or bias that may be inherent to the estimator. 

Additionally, if the output is reported correctly, it should reduce any deliberate deception from 

project promoters whom omit project risks and other potential costly elements in a traditional 

point estimate (deterministic estimate) in order to get the project started.   

Stochastic range estimating – the objective 

Most highway agencies currently express their conceptual estimate as a point estimate 

with a contingency assigned as a percentage of the construction cost (Molenaar 2005, Byrnes 

2002, Turochy et al. 2001). Byrnes reported that DOTs add a contingency ranging from 5-45% 

depending on project type and uncertainty; similar contingency factors were also reported by 

Turochy et al. (2001).  The problem with point estimates is that they communicate a false sense 

of confidence in the cost estimate, making  it difficult to assess their quality (AASHTO 2013) 

and potentially leading to forecast bias by those using the estimate to make financial decisions 

(Chelst and Canbolt 2012). Firstly, when the conceptual estimate is expressed as a point 

estimate, it appears accurate to those with no knowledge of the limitations of the estimate itself. 

Hence, there is a perceived illusion of control and predictability. Secondly those using the point 

estimate in a benefit-to-cost analysis or for budgeting, fail to acknowledge the possible extreme 

values or range in numbers that the final construction cost could eventually experience. Finally, 

Chelst and Canbolt (2012) state that there can be tendency for an anchoring bias, where “the 

forecaster becomes too anchored to the first estimate to develop a wide range that is reflective of 

actual dispersion” of the costs. Chelst and Canbolt go on to state that “the preferred technique is 

to initially focus on estimating both good and bad extremes.”  

Providing an estimate range is often thought to show less confidence in the cost and 

forethought than a point estimate. However, a probabilistic range actually requires the estimator 

to draw on a wide spectrum of experiences to define a range as well as to explore its associated 
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probabilities (Chelst and Canbolt 2012). Point estimates on the other hand simply require 

specific assumptions and corresponding numbers to justify that forecast (Chelst and Canbolt 

2012). 

This research investigates a stochastic range estimating method to improve 

communication of the conceptual cost estimate to those that are unfamiliar with its basis and 

limitations. The paper’s objective is to explore a method which permits highway agencies to 

utilize databases of historic project information for the following purposes: 

1. To forecast the final cost at the conceptual stage and, 

2. To assign a range of expected costs to help communicate the uncertainty associated with 

the conceptual estimate and, 

3. To compare cost estimating transparency of the point estimate to that of the stochastic 

approach.  

This chapter utilizes the same database developed from MDT projects and introduced in Chapter 

3. The method is tested with ANN modeling, however the principles could be extended to MRA 

models or projects of different scope.  

Background 

Holistic risk approach 

There are two problems with the current technique of assigning contingency as a 

percentage of the construction cost estimate. Firstly, the contingency required is not necessarily 

directly proportional to the construction cost; contingency should depend on other factors such as 

project type and complexity (Gransberg et al. 2011). Secondly, if the construction cost estimate 

is low, then the assigned contingency will also be low, further exacerbating the cost growth of 

the project. On the other hand if the construction cost estimate is high, then the contingency will 

be too high, unnecessarily tying up additional fiscal year funding which might have been used to 

fund additional projects.  

An alternative approach to assigning contingency as a percent of the construction cost 

estimate is to use a ‘bottom-up’ method by creating a project specific risk register. All possible 

risks, likelihoods, and consequences are assigned a possible value and contribute to the overall 

contingency fund of the project. The problem with a risk-register is that at the early stages very 

little information is known about the project, making it difficult to conduct an elemental ‘bottom-
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up’ estimate of all the risks. Additionally when one conducts a ‘bottom-up’ assessment one must 

still make an allowance for risks that have yet to be identified (Kaplan and Garrick 1981).  Since 

the conceptual estimate and its associated risk assessment, are produced at an early stage of 

project development, the allowance for unknown risks would be difficult to quantify. This 

‘bottom-up’ approach should be reserved for later, more confident, estimates when more 

information is known about a particular project, and its risks can be better itemized.   

An emerging technique, investigated in this research project, is to take a more holistic 

(‘top-down’) approach to assign the contingency (Sillars and O’Connor 2007). Sillars and 

O’Connor created such a cost-risk procedure for the Federal Transit Administration (FTA). This 

was in response to the ‘bottom-up’ risk register method not performing well and lacking the 

required variability of ranges. At the conceptual stage a ‘top-down’ holistic approach intuitively 

makes sense due to the difficulty with identifying all possible risks until the design is complete. 

The current state-of-the-practice, assigning contingency based on construction cost, is still a 

holistic approach, but it is directly proportional to the confidence in the conceptual cost estimate.  

 This research aims to leverage the ‘top-down’ cost estimating approach developed in 

Chapters 3 and 4 to not only calculate the construction cost, but also an associated contingency 

based on the risk profile of the decisions makers. Data-driven estimating models found in the 

literature generally express the result as a point estimate (Sonmez 2008). This research 

investigates the use of combining ANNs with bootstrap statistical sampling to create a stochastic 

range of the construction costs for highway projects.  

Bootstrap sampling method 

The bootstrap method provides a simple process to resample the original data-set 

(Chernick 1999). Utilizing the bootstrap method to sample a database enables one to answer a 

key question in data-analysis and statistics: how accurate are the results of the estimate? (Efron 

and Tibshirani 1993; Davison and Hinkley 1997). Efron and Tibshirani (1993), summarized 

many of the bootstrap applications discovered since the 1980s including the ability to create 

empirical distributions, calculating standard errors, integration with regression analysis and 

confidence intervals. 

The bootstrap data-set is created by sampling the original data-set, shown in Figure 19. 

There a two methods to sample the original data-set shown in Figure 19 (process A) (Efron and 

Tibshirani 1993; Davison and Hinkley 1997): 
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1. sampling without replacement (WOR) or, 

2. sampling with replacement (WR).  

 

 

Figure 19. Bootstrap process (developed from Efron and Tibshirani (1993) 

 

Extracting a nominated percentage of projects from the original data-set is sampling 

without replacement (WOR). In this process ‘n’ is defined as the size of the bootstrap sample and 

‘N’ is the number of data points in the original data-set. The bootstrap data-set cannot exceed the 

size of the original data-set (N>n). Additionally, every project in the original data-set can only 

occur once in the bootstrap data-set. The sample fraction is simply defined by f=n/N (Efron and 

Tibshirani 1993; Davison and Hinkley 1997).  

The second method to sample the projects is with replacement (WR). Once a project has 

been included in the bootstrap data-set then it is returned to the original data-set of projects to 

enable it to be selected again (Sonmez 2011; Efron and Tibshirani 1993; Davison and Hinkley 

1997). Sampling WR means that some data in the bootstrap set can appear zero times, some 

appear once, some appear twice or more (Sonmez 2008).  

Davison and Hinkley (1997) argue that sampling WOR is the simplest method, Efron and 

Tibshirani (1993) argue the opposite. Provided that the bootstrap sample is much smaller than 

the population size then the probability of sample repetitions will be small anyway (Efron and 

Tibshirani 1993). This research tests sampling WOR method, this is because the bootstrap 

method is being used to create confidence intervals and not as a method to deal with lack of data 

used in other studies (Tsai and Li 2008).  
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Once the bootstrap sample of projects is created, the construction cost (output) can be 

calculated by modeling (process B). Two methods presented above were ANN or MRA to 

predict the construction cost. Because ANN and MRA are data-driven estimating techniques then 

the output will vary with the input of projects. Therefore, a range estimate can be created if there 

is methodical control of the data-set (inputs) going into the data-model to get accordingly varied 

construction cost (outputs).  

The final step is to iterate, as shown in Figure 19. Iterating the bootstrap sampling 

process many times allows one to obtain multiple construction cost outputs with different costs. 

A probability distribution function of the construction costs (outputs) can be created either in a 

discrete method (probability mass function) or by converting the discrete outcomes to a 

continuous function (probability density function). The probability distribution function is 

commonly called a stochastic estimate because the expected construction costs have probabilities 

associated with them (Bedford and Cooke 2001). 

Tsai and Li (2008) used the bootstrap method combined with an ANN to estimate the 

cost of manufacturing ceramic powder. Their study specifically pursued this technique to address 

the small training data-set that they had by creating virtual samples. Tsai and Li’s study found 

that using the bootstrap method to create virtual samples actually reduced the ANN error and 

made the predictions more stable. They argued a benefit of bootstrap sampling combined with 

ANN modeling was the improvement in accuracy when little data was available through the use 

of virtual samples. Instead of stabilizing a small data-set, this chapter makes use of the bootstrap 

approach to create a stochastic cost estimate, the details of which are covered in the next section.  

Stochastic estimating – previous studies 

Kaplan and Garrick (1981) recognized the benefits of a probabilistic curve when 

quantifying risk by stating that “a single number is not a big enough concept to communicate the 

idea of risk. It takes a whole [risk] curve.” The benefit of stochastic estimating has been explored 

by various authors since then, but few in the field of highway construction cost estimating. 

FHWA, in their cost estimating guidance (2007), allow highway agencies to express their 

conceptual estimates as a range with indicated levels of confidence, thus it is logical to draw 

increased attention of the ability of highway agencies to communicate their conceptual estimates 

through a range.  
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In 2005 Molenaar created a stochastic cost estimating method for Washington State 

Department of Transportation (WSDOT) specifically for projects greater than $100M in cost. 

WSDOT are now successfully implementing this practice. Molenaar concluded that the 

“stochastic method better conveyed the uncertain nature of project costs at the conceptual phase 

of project development.” The stochastic method was trialed on ‘Highway Megaprojects’ and 

although the method was effective, the cost of the process was in the order of $3M for WSDOT 

due to workshops, development costs and feedback sessions. Molenaar’s research concluded that 

the benefit was better management of public funds and possible gains in public confidence 

through transparent communication. That research solely concentrated on megaprojects and if 

highway agencies are to adopt this method then they need to employ a risk-analyst expert. The 

research reported below instead focuses on typical projects for highway agencies and should not 

require the employment of a specialist to manage.  

Sonmez (2008) used bootstrap sampling with replacement to calculate a probabilistic 

conceptual cost estimate of a building. The number of projects used to train the regression model 

was 19. The technique was deemed valid when the one building project, with which the model 

was validated with, was enclosed within the 90% probability level. A total of 1000 iterations 

were completed where the construction cost of the test project was calculated in each iteration 

with a bootstrap data-set of 20 projects. Each of the 19 projects available to make the bootstrap 

sample was included either nil, once, twice or many times to fill the 20 training spots, thus 

sampling WR was used. Sonmez stated that further studies should include larger data-sets, this 

chapter contributes to the limitation outlined by Sonmez through the use of 189 projects in the 

database as opposed to 20.   

In other fields, researchers used the bootstrap procedure to represent uncertainty for 

incremental cost-effectiveness ratios for endoscopy clinical procedure (Lord and Asante 1999). 

The authors stated that health economists have a “responsibility to present estimates of the 

degree of uncertainty surrounding the results of economic evaluations.”  They indicated that 

decision-makers place too much reliance on point estimate results presented. This 

communication issue and perceived confidence is therefore not only experienced in the 

construction industry.  

Other techniques to produce a stochastic estimate, without the use of bootstrap sampling, 

do exist. Monte-Carlo simulation can be used simulate outcomes to produce probability in a 
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commercial spreadsheet. In 2004 Sonmez used this approach to create a range estimate using 

normal distribution. However, in that research Sonmez did outline the inherent assumptions 

regarding the distributions and expected errors. This conclusion further supports the use of 

bootstrap to create an empirical distribution as it “enjoys the advantage of not relying on 

assumptions or calculations of the original distributions” (Dupret and Koda 2000).  

Methodology 

To compare the cost estimating effectiveness of a stochastic estimate with a point 

estimate then both methods of estimating the construction costs were completed. The 

methodology differences for the two different models are shown in Table 9. The ANN model for 

the point estimate was that developed in Chapter 4. No adjustment to the model architecture, 

input attributes or modeling software were made between the models; the only exception being 

the projects that were used to train the ANN.  

 

Table 9. Model details for point estimate and stochastic estimate 

 Point Estimate Stochastic Estimate 
Number of projects in testing 
database 

38 38 

Number of projects in 
training database 

151 121 

Number of iterations 1 100 
Output Point estimate Confidence interval 
Validation MAPE Actual CN within confidence 

interval 
 

The three main steps taken to create the point estimate and stochastic estimate output are 

detailed: 

1. ANN data-driven model from Chapter 4 used predict construction cost as a point estimate 

for 38 test projects. All 151 projects were used to train the ANN as shown in Table 9.  

2. Bootstrap samples of 121 projects were used to train the ANN model instead of the entire 

data-set. A total of 100 iterations were completed (i.e. 100 point estimates) with 

randomly selected bootstrap samples. The construction cost of the same 38 projects was 

predicted on each iteration. The combination of all construction costs formed the 

stochastic estimate and this was converted into a confidence interval.  
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3. The output of the point estimate and stochastic estimates were compared.  

A point estimate provides a single number and a stochastic estimate provides a range of 

numbers. The difference in the form of the estimate output makes comparison difficult. As such 

our research team validated the two models differently, this is shown in Table 9. The ability to 

communicate the cost estimate confidence was compared between the point estimate and that of 

the range estimate. For both estimating methods the performance of the estimating tool was 

measured against the actual construction cost, this is the validation technique in Table 9. 

Comparison with the actual CN cost to the point estimate was calculated using the MAPE 

(Equation 1, Chapter 2). The performance of the range estimate could not be measured using the 

MAPE as the output was a range of numbers. Instead, for validation of the stochastic estimate the 

actual construction cost was compared to the range estimate to see if it was enclosed within the 

maximum and minimum extreme values. 

Data Analysis and Results 

The results section is divided into two parts. The ANN model outlining the results from 

developing a data-driven point estimate (Results I). In the second part the point estimate is 

further developed into a stochastic estimating model (Results II).  

Results I: point estimating model 

The point estimate was calculated using all 151 projects to train the model and the same 

input parameters as presented in Chapter 4. The same 38 projects were used to test the model and 

calculate the MAPE, the error from each of the individual 38 projects is shown in Table 10. The 

MAPE of all test projects was calculated through Equation 1, this was 23% and shown in Table 

10, well within the recommended performance in the AASHTO Practical Guide to Cost 

Estimating (2013) at the conceptual stage.  

It could be perceived by a project promoter that given a point estimate, the construction 

cost should be enclosed by a range within 23% of that number. But this is not correct. The 

MAPE was calculated based on the average error from the actual construction cost. If one 

enclosed a range +/-23% from the actual construction costs only 24 out of the 38 estimates would 

fall within this range, as shown in Table 10. Thus this finding shows that the MAPE does not 

reflect the confidence of each individual project, our model much more confidently predicts the 

construction costs of some projects when compared to others. The empirical method produced in 
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the following section creates individual contingencies for each project based on the confidence in 

that project and associated data.  

Table 10. Point estimate versus actual construction cost 

Unique project 
number 

Predicted point 
estimate 

Actual construction 
cost Estimating Error 

Enclosed within +/-
23% bounds of the 

predicted 

7907  $       2,190,506   $       2,049,786  7% Yes 

7655  $          687,360   $          618,878  11% Yes 

7648  $       1,610,835   $       1,577,284  2% Yes 

7629  $          935,281   $       1,416,928  34% No 
7622  $       2,931,223   $       2,735,769  7% Yes 
7616  $       2,714,477   $       2,341,870  16% Yes 

7613  $          274,872   $          346,417  21% Yes 

7611  $          815,565   $       1,228,248  34% No 
7610  $          788,482   $          668,753  18% Yes 
7608  $          478,445   $          655,898  27% No 
7601  $       2,494,663   $       2,153,096  16% Yes 
7471  $          419,294   $          845,535  50% No 
7462  $          577,875   $          706,344  18% Yes 
7444  $       1,956,166   $       1,904,516  3% Yes 
7405  $          136,058   $          121,409  12% Yes 
7306  $          191,456   $          413,068  54% No 
7108  $          469,082   $       1,173,722  60% No 
6988  $          121,798   $             85,237  43% No 
6974  $       2,732,350   $       3,380,123  19% Yes 
6959  $          535,376   $          508,032  5% Yes 
6952  $       1,567,018   $       1,963,090  20% Yes 
6948  $          324,069   $          337,096  4% Yes 
6944  $          865,742   $          960,662  10% Yes 
6942  $          655,190   $          541,157  21% Yes 
6927  $       1,431,002   $       1,300,320  10% Yes 
6894  $       2,080,816   $       1,469,483  42% No 
6811  $          336,661   $          296,926  13% Yes 
6799  $          211,790   $          182,946  16% Yes 
6795  $          354,359   $          351,910  1% Yes 
6523  $          463,207   $          578,304  20% Yes 
6503  $          218,961   $          255,169  14% Yes 
6501  $       1,340,614   $       1,044,308  28% No 
6499  $          597,541   $          772,972  23% No 
6266  $          570,293   $          327,928  74% No 
6253  $          440,025   $          656,403  33% No 
6237  $          344,405   $          285,501  21% Yes 
5752  $       2,218,890   $       1,701,527  30% No 
5751  $       1,717,133   $       2,663,697  36% No 

MAPE (calculated through Equation 1, Chapter 3): 22.9%  
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Results II: stochastic estimating model 

Table 11. Range estimate results for 38 test projects 

Project 
Number 

Minimum Value 
Predicted 

Probability Level Maximum 
Value 

Predicted 

Actual 
Construction 

Cost 5% 15% 85% 95% 

7907 $824,741 $1,406,550 $1,728,648 $2,825,781 $2,870,946 $3,581,856 $2,049,786 
7655 $430,625 $467,737 $572,985 $694,898 $696,662 $717,304 $618,878 

7648 $542,000 $999,585 $1,199,560 $2,094,691 $2,412,435 $3,556,034 $1,577,284 
7629 $895,547 $922,928 $923,321 $1,126,959 $1,221,602 $1,529,054 $1,416,928 

7622 $1,133,263 $1,546,317 $1,568,898 $3,031,642 $3,032,167 $3,032,169 $2,735,769 
7616 $1,153,138 $1,174,832 $1,628,757 $2,714,176 $2,715,070 $2,737,307 $2,341,870 
7613 $161,313 $194,891 $229,911 $301,865 $329,689 $384,002 $346,417 

7611 $474,971 $483,203 $529,673 $1,032,264 $1,246,094 $1,456,776 $1,228,248 
7610 $235,422 $488,716 $584,155 $753,068 $801,898 $1,248,959 $668,753 

7608 $330,430 $355,491 $420,568 $518,382 $543,090 $630,549 $655,898 
7601 $1,440,817 $1,440,837 $2,492,953 $3,431,572 $3,431,577 $4,038,078 $2,153,096 

7471 $316,712 $355,137 $366,945 $558,984 $1,002,218 $2,511,961 $845,535 
7462 $344,431 $480,753 $548,546 $668,353 $759,549 $1,204,432 $706,344 
7444 $1,173,390 $1,232,745 $1,580,326 $2,735,104 $3,536,238 $4,051,083 $1,904,516 

7405 $89,920 $104,680 $121,730 $164,815 $185,335 $310,316 $121,409 
7306 $144,090 $160,617 $167,621 $234,521 $281,810 $2,283,585 $413,068 

7108 $145,940 $372,513 $472,067 $627,791 $666,937 $2,271,069 $1,173,722 
6988 $97,859 $104,047 $111,191 $148,464 $162,408 $402,573 $85,237 
6974 $1,550,002 $1,773,396 $1,844,132 $3,065,984 $3,621,122 $3,891,009 $3,380,123 

6959 $233,175 $308,543 $405,207 $545,208 $554,351 $570,260 $508,032 
6952 $527,431 $603,247 $1,001,401 $2,048,786 $2,319,392 $2,657,287 $1,963,090 

6948 $248,460 $270,439 $288,816 $391,078 $444,432 $1,077,672 $337,096 
6944 $299,942 $466,895 $524,385 $1,254,101 $1,323,058 $2,891,232 $960,662 

6942 $263,154 $377,331 $502,391 $692,654 $736,706 $766,056 $541,157 
6927 $826,662 $913,651 $1,128,157 $1,529,055 $1,529,055 $3,150,506 $1,300,320 
6894 $680,576 $749,276 $1,197,166 $2,304,526 $2,959,622 $3,327,156 $1,469,483 

6811 $299,087 $313,086 $338,888 $605,708 $674,011 $1,238,211 $296,926 
6799 $154,221 $158,102 $169,601 $214,793 $229,768 $296,274 $182,946 

6795 $241,073 $287,675 $359,852 $545,451 $596,202 $857,057 $351,910 
6523 $256,790 $362,354 $410,310 $522,215 $551,703 $605,589 $578,304 
6503 $147,859 $169,334 $186,775 $245,650 $528,303 $1,006,085 $255,169 

6501 $558,065 $896,055 $906,936 $1,342,951 $1,476,607 $1,529,052 $1,044,308 
6499 $387,612 $439,490 $453,757 $615,456 $650,599 $1,382,243 $772,972 

6266 $200,185 $315,382 $400,045 $661,697 $665,759 $1,173,788 $327,928 
6253 $143,152 $199,808 $291,538 $556,654 $628,034 $1,359,631 $656,403 

6237 $183,489 $198,812 $268,941 $385,624 $439,155 $558,939 $285,501 
5752 $1,000,091 $1,255,209 $1,543,764 $4,249,406 $5,036,280 $5,275,446 $1,701,527 
5751 $971,781 $1,261,650 $1,541,001 $2,203,069 $2,502,674 $4,257,199 $2,663,697 

 

Range estimate results for all 38 test projects are shown in Table 11. The minimum and 

maximum values were the two extremes predicted during the 100 iterations in bootstrap samples. 
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The empirical probability levels 5%, 15%, 85% and 95% indicate probabilities that project costs 

will be below that value. The 90% confidence range of estimated construction cost is the range 

between the 95% and 5% probability levels, similar confidence levels can be obtained also by 

subtracting the high and low probability levels to calculate the confidence range. There are some 

interesting outcomes shown in Table 11: 

• 35 of the 38 test projects fall within the minimum and maximum expected extremes 

predicted throughout the 100 bootstrap samples.  

• 27 of the 38 test projects fall within the 5% and 95% expected cost. 

• 18 of the 38 test projects fall within the 15% and 85% expected cost. 

From these results it is apparent that as the confidence range is narrowed then more projects fall 

outside of the range. Thus to best represent the uncertainty then one should quote both the 

maximum and the minimum values.  

Figure 20 displays the stochastic estimate for four selected projects. Project 6799 is a 

chip-seal project only and is known to a very high degree of certainty. This is shown in Figure 20 

by the narrow range of expected construction costs. Projects 6952 and 7907 were mill and fill 

projects with length 6.2 and 7.5 miles respectively and the final surface was chip-seal surface. 

Due to the similar characteristics they are parallel with project 7907 slightly higher in predicted 

and actual costs due to the slightly longer length.  

Project 5752 displays the least certainty and this is displayed visually with the widest 

range in expected construction cost. The stochastic ANN model has predicted a drastically 

different range for this project compared to both projects 6952 and 7907, this is despite 

reasonably similar actual construction costs for all three of three projects (5752, 6952 and 7907). 

Project 5752 was 8 miles in length, included asphaltic levelling, asphaltic isolation lift, asphaltic 

resurfacing lift followed by a chip-seal surface. The complexities and unknowns were all high 

with the other major difference being inclusion of bridge work. The modelling process has 

recognized the many high complexities and unknowns when calculating the cost of project 5752 

and therefore produced a huge range in construction costs.  
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Figure 20. Visual representation of estimate confidence for four projects 

The actual construction costs for each project, shown in Figure 20, fall within the 

confidence intervals for their respective ranges predicted with the model. The four plots in 

Figure 20 lead one to conclude that the distribution of expected construction costs are not 

constant. If one were to assign a distribution, then the assumptions of that named distribution 

would not work on all projects, this further highlights the benefits of the empirical process 

presented in this paper.  

Discussion 

A limitation of ANN results is that it is essentially a ‘blackbox’ where one cannot easily 

decipher the reason for cost variation. The literature confirms that this is a common downside to 

ANNs (Kim et al. 2004; Hegazy and Ayed 1998). The project costs are estimated based on 

pattern recognition, and perhaps the pattern recognition, or lack thereof, is providing the 

confidence intervals. When more data is added to the ANN then one may become more confident 

in the range of possible project costs.  

In developing a stochastic and point estimating model with the same set of data it has 

become apparent that:  

• The point estimate results provide no rational means to assign an individual contingency 
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for each project based on the result. Thus the point estimate provides no improvement to 

the current state-of-the-practice for assigning contingency.  

• Producing a stochastic estimate visually aided the comparison of expected construction 

costs for various projects.  

• Given the large variations in the empirical distributions then it is apparent that a single set 

distribution could not easily be added to each project to assess the confidence levels.  

This research presented here is an example of how a highway agency could embrace this 

estimating principle for cost transparency, utilization of existing databases and to express the 

actual confidence in each estimate. Changing the culture of project estimating from point 

estimates to estimating ranges will require a major attitude shift. , “It is more challenging to 

determine the investment in the presence of significant uncertainty [as opposed to point 

estimates] as to the project’s return on investment. It requires a corporate culture and leadership 

that can tolerate and even embrace this ambiguity” (Chelst and Canbolat 2012).  

The commercial software used to train and test the artificial neural network was not 

compatible to bootstrap sampling, as such the iterations were completed manually and it was 

time consuming limiting the iterations to 100. More iterations or a larger data-set should better 

enclose the actual costs around the extremes, although 35/38 is 92% of the time correct. Further 

studies could extend the data-sets, conduct more iterations and investigate the sampling fraction 

used (80%) along with trialing sampling WOR compared to WR.  

Conclusion 

Point estimates are simply one number with no indication of the level of confidence 

behind that number. In later estimating stages, quantities are known, and highway agencies can 

be more confident and can express the estimate in that form. For the earlier estimate stages, 

where confidence is lower, the estimate should be expressed in a manner that describes the 

estimator’s confidence and providing a range does just that. This research has shown the power 

that developing an empirical distribution has for expressing the point estimate as a distribution of 

likely costs. This research found that not all projects have the same level of confidence, as such 

individual contingencies require a rational basis for their amount rather than a fixed percentage 

of construction costs.  
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CHAPTER 7.  CONCLUSIONS AND LIMITATIONS 

Conclusions 

 This section presents the main findings from each of the three research papers in Chapters 

4, 5 and 6. Chapter 4 presented a method to rationally sample data that could be used for data-

driven techniques such as artificial neural networks or multiple-regression analysis: 

• Firstly, when all available 151 data points were used to train the model, the error in 

testing the model on the remaining 38 projects was the lowest. This finding aligns with 

literature suggestions where more data for testing and training the model will increase 

accuracy and the reliability of that model.  

• When less than 151 data points were used to train the model, the error in testing the 

remaining 38 projects was least when the distribution of key input attributes were 

reflected in the sample of data.  

Findings from Chapter 4 were used to rationally select the 38 projects to test the model against. 

This MAPE reported of 22.9% is therefore reflective of the error for future project predictions. 

The same 38 projects were used to test the model in Chapters 5 and 6.  

 Chapter 5 focused on quantifying the efforts to conduct the conceptual development stage 

estimate. The effort collected was perceptive through a survey at a highway agency. The major 

findings of Chapter 5 were: 

• Selecting input variables that have a high influence on the construction cost but require a 

low level of effort to calculate or identify was proven to be a rational selection method.  

• The case-study showed that once 6-8 variables were added to the model then further 

detail yielded no reduction in the estimating error. 

• Highway agencies do not need to store and collect more input variables than required. In 

doing so only increases the demand on data storage and efforts to collect the data with 

little to no increase in performance.  

Chapter 5 proved for the first time that not all project attributes need to be known to calculate the 

construction cost at the conceptual stage to reasonable accuracy. This result is positive for 

practitioners wanting to implement data-driven techniques.   

 Chapter 6 leveraged the artificial neural network created in Chapters 3 and 4 by 

combining the method with bootstrap sampling. The purpose of this was to express the 

conceptual estimate as range as opposed to a point estimate. Point estimates can result in 
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overconfidence and not communicate the lack of uncertainty associated with the conceptual cost 

estimate.  

• Bootstrap sampling combined with artificial neural networks were proven as a suitable 

method to produce a range estimate for highway projects.  

• The range estimates better communicated the expected construction costs at the 

conceptual stage as opposed to a point estimate. There was an improved ability for the 

cost estimate to have a contingency assigned not simply based as a percentage of the 

construction cost.   

• The empirical distribution produced confidence intervals for all 38 test projects. Because 

the distribution was empirical and specific to each project then no assumptions were 

necessary, typically required when fitting a named distribution.    

Limitations 

 The limitations in Chapter 4 start with the content analysis completed. There may be 

other relevant literature in the field of early estimation for construction projects which were not 

considered in the content analysis of this chapter. The results of this section are therefore limited 

to the 16 publications investigated. Chapter 4 then makes use of the database developed in 

Chapter 3. The results from the ANN cannot be generalized to include all highway projects. The 

same database was utilized throughout Chapters 5 and 6 and therefore these all have this same 

limitation.  

 In Chapter 5 the content analysis from Chapter 4 was extended, thus very similar 

limitations exist. Additional to the content analysis, perceptive data for estimating effort and 

influence of the input variables was collected through a survey in Chapter 5. This survey was 

conducted at MDT and completed by 31 employees suitably qualified to do so. The results of 

this survey cannot be extended beyond data from this agency. The results of Chapter 5 are 

therefore only relevant to the data collected for that agency. 

 Chapter 6 leverages the data-driven ANN model created in Chapters 3 and 4. Bootstrap 

sampling was combined with ANN. The ability to communicate the estimate as a range was only 

demonstrated through 38 test projects and as such the results are limited to that data.   
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CHAPTER 8. CONTRIBUTIONS AND RECCOMENDATIONS                                                 
FOR FUTURE RESEARCH 

Contributions 

The major contribution of this research was that for the first time it was proven that at the 

conceptual estimating stage once enough information is known then adding further detail does 

not enhance the estimate accuracy. This is significant for practitioners willing to trial data-driven 

CCE techniques. Practitioners can instead concentrate on creating an accurate database with 

those variables that have a high impact on construction cost and do not require a high-level of 

effort. The specific contributions are outlined for each chapter below.  

Chapter 4 for the first time identified that some previously published literature on data-

driven CCE models are reporting models with such low prediction error capabilities, yet are 

powered by databases with very few projects. This was not in line with literature reports that 

larger databases increased the accuracy and reliability of estimating models. Furthermore, it was 

identified that no literature had reported their method to select the data for their models in a 

rational way. As such, this research introduced a method that could be used if an entire database 

were not to be used for estimate modelling. It also contributed to the body of knowledge further 

proving the statement that ‘larger databases increase the reliability and accuracy of a model’, this 

later point being contrary to the content analysis of select publications.  

Chapter 5 attempted to quantify the level of effort required to conduct the conceptual 

estimate, previously this has never been attempted in the field of construction cost estimating. A 

new objectives hierarchy tree was proposed at the CCE stage, that being creating a model to 

predict with reasonable accuracy but require a low level of effort. Previous research has only 

focused on reducing the estimating error. To address this, a methodology to select input variables 

which meet the dual-objective framework was proposed. The paper’s primary contribution was 

significant for both researchers and practitioners – for the first time it was proven that while 

increasing the number of input variables in an early estimate may appear to enhance estimate 

accuracy on an intuitive basis, this is not necessarily true. Once around 6 to 8 high impact/low 

effort variables were included in both the MRA or ANN models then further input variables 

yielded diminishing returns in the estimate error.  

Finally, Chapter 6 compared stochastic cost estimating to the point estimate which is the 

typical format at the conceptual stage. The benefits of bootstrap sampling combined with 
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artificial neural networks was displayed with data from a highway agency for the first time. The 

ability for the stochastic estimate to reflect the true confidence in the estimate at the conceptual 

stage was displayed. Much literature has produced data-driven models that construction 

practitioners could use to calculate a point estimate at the conceptual stage, instead Chapter 6 

challenges the overconfidence associated with a point estimate. Specifically, the challenge is laid 

for highway agencies to not assign contingency based on a fixed percentage of the construction 

cost. Data-driven methods such as proposed in this chapter display the ability for this to occur.  

Recommendations for Future Research 

The ability for data-driven techniques, such as ANN and MRA, to calculate the 

conceptual cost of projects has been proven in the literature but has not yet been implemented by 

highway agencies. This thesis contributes to methods and improvements in order for that to 

occur. Further research in this area could continue as follows:  

• All techniques and methods could be proven with larger databases for increased 

reliability. Additionally the methods could be extended beyond the scope of works 

displayed in this research.  

• The stochastic results produced in Chapter 6 was completed manually for 100 iterations 

due to the incompatibility of the software’s. Future research would conduct more than 

100 iterations of the stochastic estimating method by creating a software or method to 

combine the ANN modeling with bootstrap sampling.  

• It is known that the commercial software selected to conduct the ANN or MRA modeling 

will affect the output. As part of this research only one commercial software was tested. 

Future research would test the methodologies and practices on alternative software to 

validate results or investigate better performance.  

• A method to predict the likelihood of construction growth from the initial estimate 

(CGIE) would benefit the estimate at the conceptual stage. It has become apparent that 

the confidence in estimating the construction costs at the initial stage is hugely variant for 

each project. A data-driven method could be investigated to recognize patterns between 

CGIE and the types of projects which produce higher variations. This could be used in 

combination with the point estimate to produce a cost estimate with associated 

contingency or a confidence rating index. Alternatively, it could be correlated with the 
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estimate ranges produced in Chapter 6 as further validation of the range estimates 

produced for construction cost estimate for each of the 38 test projects.   

• In this thesis there was a larger focus on the use of ANN and only one chapter produced 

results using MRA. In that chapter an assumption of linearity was made to produce the 

predictions. An emerging method called Multivariate Adaptive Regression Splines 

(MARS) is being trialed in other fields with success. The prediction model produces a 

series of “piecewise” linear relationships (Haleem et al. 2013). Further research could 

extend this into the field of highway construction cost estimating.  

• The database was created with an assumed inflation rate applied to all construction costs. 

This rate of 3% was based on experience from the highway agency that provided the data, 

MDT. Of the publications studied in this research there was silence on the method or 

inflation rate applied to their construction costs. Further research could investigate a 

method to predict the inflation rate, as opposed to using historical averages, for best 

prediction results.  

• Much literature studied on artificial neural networks select the input variables based on 

expert opinion and trial and error. In this research a method was proposed to select the 

variables based on the perceptive level of effort and influence on the construction cost. 

Future research could investigate decision analysis methods, for example multi-attribute 

utility theory (MAUT), to select the best input variables for their models.  
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APPENDIX A. INPUT VARIABLES 

 

Available: Measures: Data Source High Medium Low Yes No
Urban indicator PPMS 41 148

District PPMS
District 1: 57; District 2: 54; District 3: 
42; District 4: 18; District 5: 18

2
Construction on Native American 
Reservations Y Binary Y/N indicator PPMS, PFR 15 174

3

Context sensitive design issues, 
controversy - level of environmental 
documentation

AADT at let year GIS
AADT continuous range from 100 to 
20667

Highway functional 
classification PFR

Collector: 38; Minor Arterial: 57; 
Principal Arterial (interstate): 34; 
Principal Arterial (non-interstate): 60

5 Design speed(s) Y Design Speed PFR Range from 30mph to 70mph

6
Site topography (steep, flat or 
undulating terrain) Y Terrain PFR Flat: 74; Rolling: 92; Mountainous: 23

7
Start and End Stations, Length and 
Width Y Length, width, area TIS, PPMS, PFR

Length ranges from 0.6 miles to 26.84 
miles

8
Existing surfacing conditions and 
depths

9 Number of intersections in project

10
Number of bridges in the project 
scope Y

Number for deck 
treatment PFR

Range from 0 to 9 bridge deck 
treatments for all projects

11 Intersection signalization and signage Y
Signage and pavement 
marking complexity PFR 114 57 18

12 Letting Date Y Let quarter and year
Year 2009: 47; Year 2010: 50; Year 2011: 
32; Year 2012: 39; Year 2013: 21

13 Horizontal and Vertical Alignment

14
Extent of changes to the existing 
intersections

%mill PFR
Proportion ranges from 0 to 1 on 
continuous scale

%overlay PFR
Proportion ranges from 0 to 1 on 
continuous scale

16 Curb & Gutter and Sidewalk Y
ADA/sidewalk 
complexity PFR 167 11 11

17
Bridge type (steel or concrete) and 
complexity

18
Volumes of excavation and 
embankment

19
Geotechnical - subsurface & slope 
recommendations Y Geotechnical complexity PFR 155 23 11

20 Bridge deck area Y Area of deck treatments PFR
0 square feet to 118,000 square feet on 
a continuous scale

WZSM PFR Level 1: 10; Level 2; 91; Level 3: 88
Railroad complexity PFR 168 21 0

22
Environmental permitting 
requirements- wetlands

23
Hydraulic recommendations and 
culverts

24 Storm Sewer extents

25
Bridge span lengths (between 
supports)

26 Foundation complexity of the bridge
27 Right-of-way acquisition and costs Y ROW complexity PFR 186 3 0
28 Extent of Utility relocations and costs Y Utility complexity PFR 85 52 52
29 Contract Time Y Contract time PPMS Range up to 260 days

Data statistics of the 189 projects and the input variables
Date: 7/30/2015

YTraffic Control - closures or detours21

Complexity Rating System Binary rating Other data input

4 Design AADT Y

Y15
Typical Section (depths of surfacing 
and aggregate)

Suggested 29 inputs:

1 Urban or rural project Y



www.manaraa.com

 
 

75 

APPENDIX B. COMPLEXITY RATING CHART 

Terrain/Topography Flat 
Generally flat, fairly flat 
etc 

Rolling 
Flat and rolling or gently rolling 

Mountainous 
Gorges, steep terrain etc 

    
 Low Medium High 
Geotechnical 
Involvement 

No digouts or other 
geotech 

Roadway projects will require minor digouts 
Additional spot mill/fill in projects not receiving 
any mill (<3 intersections or bridge approaches or 
thick bridge mill in chipseal or overlay project) 

Extensive sections of roadway digouts 
>3 spot mill/fill over and above the mainline 
works  
Relevel bridge approach slabs 
Multiple of the medium type works 

Traffic signs and 
pavement markings 

Standard pavement-
marking replacement 
only (required on all 
projects) 
 
Or “traffic to assess 
reflectivity and upgrades 
required” 

Standard pavement-marking replacement with any 
of the following two: 

- Replace or upgrade signs 
- Changes to pavement markings 

required/TWTL markings/lane changes 
- Significant pavement marking upgrades in 

urban area 
- Some sections of rumble-strip 
- Minor and singular safety sign: Weigh-In-

Motion advance sign etc… intersection 
advance signs 

Or none of the above but rumble strips on the entire 
project.  

As with medium rating plus any: 

- Flashing signs or traffic lights 
- Overhead signs 
- Lighting 
- Substantial upgrades to rumble-

strips and any of the other medium 
works 

Railroad Involvement Low likelihood of 
requiring agreement 
>50ft from railroad 

Possibly flagmen at times 
Project areas within 50ft of railroad and railway 
insurance required 
 

Flagmen at times 
MRL agreement 
R/W acquisition and/or utility involvement 
with railroad 

Utility Complexity No utility involvement Medium rating for any of the geotechnical, 
ADA/sidewalk or guardrail to reflect the possible 
utility identification or relocation 
No major utility relocations 
And/or Mill/Fill in urban area requiring ironwork to 
be raised and protected 

High rating for any of geotechnical, 
ADA/sidewalk or guardrail  
or 
Significant utility disturbance is known 

Environmental issues Categorical Exclusion Categorical Exclusion or Environmental 
Assessment 

Environment Impact Study or complex 
Environmental Assessment required 
Studies of multiple alternatives 
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Minimum interaction 
with environmental and 
permitting agencies 
Minor environmental 
impacts 
Do not involve cultural 
resources, hazardous 
waste, Section 4(f) 
evaluations or 
substantial flood plain 
encroachments 

Cultural Resources (historical, archaeological etc), 
SHPO 
Wetland mitigation, 124 notification, 404 permit 
required 
Parkland involvement, hazardous waste, floodplain 
encroachments 
Water and air pollution mitigation 
Major coordination with Game or Fish and Boat 
commissions 
Endangered species 
Migratory Birds 
Cores required to test if AC is contaminated with 
asbestos 

Continued public and elected officials 
involvement in analyzing and selecting 
alternates 
Other agencies (such as FHWA, COE, EPA, 
Fish, Wildlifte & Parks, DEQ, etc) are 
heavily involved to protect air; water; game; 
fish, threatened and endangered species; 
cultural resources (historical, archaeological, 
parks, wetlands, etc) etc 
Tribal involvement with resources 

Guardrail (on bridge or 
highway) 

No guardrail work Either: 
- 1 rail upgrade or a few (1-3) bridges 

requiring end terminus upgrades 
- Awaiting recommendations from safety 
- Guardrail extensions on 1-bridge 
- Guardrail repairs 
- Minor guardrail replacement 

Significant upgrades possibly involving: 
- >3 end terminus on guardrails 
- Guardrail extensions 
- Concrete bridge rails 
- Raising heights on >1 bridges or 

other guradrails 
- Entirely new guardrail installation 
- >1 rail upgrades 

ADA and sidewalk None 1 ADA intersection upgrade and/or minor sidewalk 
involvement or traffic furniture 
Detectable warning signs being added 

More than 1 ADA upgrade and/or extensive 
sidewalk upgrades 
Curbing or traffic furniture upgrades.  
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APPENDIX C. SURVEY AND RESULTS 
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Key to analyze the survey results: 
Question 1) When do you typically compute or identify this variable in the preconstruction stages? 

 
Answer: 

Nomination PFR A&G SOW PIH Final 
Plans 

Scale: 1 2 3 4 6 7 
 

Question 2) Rate the typical effort required to compute or identify each variable: 

Rating: L = Low effort, information 
available, desktop study 

M = Medium time and effort H = High effort involved. 
Possibly site visits, site 
investigations and 
approximations. 

Scale: 1 2 3 
 

Question 3) If required, what is the first stage that you could roughly compute or identify this variable? 

 
Answer: 

Nomination PFR A&G SOW PIH Final 
Plans 

Scale: 1 2 3 4 6 7 
 

Question 4) Rate the additional effort required to identify or compute this cost influencer at an earlier stage 

Rating: L = Little extra effort M = Average additional effort 
and time 

H = Lots of extra effort and 
time 

Scale: 1 2 3 
 

Question 5) How influential do you believe this variable is on construction cost: 

 
Answer: 

Does not influence 
cost 

Minor influence Average influence Major influence 

Scale: 1 2 3 4 
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Results using the key from above: 
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R_1eFy4CJrrMm3JqK 1 1 2 2 2 1 2 2 2 1 2 2 3 3 3 3 4 3 5 4 5 4 4 4 5 5 6 6 6
R_1DU5jJgtUbYMokT Civil Engineering Specialist Road Design 1 1 3 2 2 2 2 2 2 2 4 2 3 4 3 3 2 3 4 3 5 5 5 5 4 4 5 6 6
R_dg4ugYvLdQLZljb 2 2 2 2 2 2 3 2 2 2 2 2 3 3 3 3 3 3 3 5 5 4 3 4 3 4 5 5 6
R_1jfhj5wFrHvsyfF Design Superviser Highways/Road Design 2 2 4 2 2 2 3 4 2 2 2 4 3 4 3 3 4 3 4 4 4 4 4 5 4 4 5 5 6
R_1n1qlsafURopcxX Project Design Manager - Butte District, Helena Ro  Highways Bureau/Engineering Division 1 1 2 3 2 2 2 2 1 1 2 1 3 4 3 4 4 3 4 3 5 3 4 5 3 3 6 6 6
R_3fDBxpI87M2jdqE 1 1 2 1 1 1 3 2 2 2 4 2 3 4 4 4 2 4 4 3 4 5 4 4 3 3 5 5 5
R_2zIazKl1jtMkHLI Highways Engineer Engineering/ Highways Bureau 1 1 2 1 1 1 2 2 2 1 3 3 2 4 3 2 4 3 3 1 3 2 4 4 5 5 5 3 5
R_2WIT1OSEFtocCBd District Projects Engineer Billings 1 1 4 2 2 1 1 1 1 1 4 1 3 4 4 4 4 5 4 5 4 4 4 4 4 5 5 5 5
R_bEfPyQKuDzHbbCZ 1 1 2 3 3 2 2 2 2 3 3 1 3 3 3 3 4 4 4 5 5 5 5 5 6 6 5 4 4
R_2YgHJsn5MvjQLY0 Road Design Supervisor Highways 1 1 3 3 2 2 3 2 2 2 3 6 3 5 3 4 4 6 4 5 5 5 3 3 5 5 6 6 6
R_1g53A4uQG6YNjEd Project Design Manager Road Design 1 1 2 2 2 2 2 2 2 3 5 2 3 4 4 5 6 5 5 5 5 4 4 4 5 6 5 5 6
R_2zzHL8ADHeSyOQa Design Supervisor Missoula District 1 1 2 2 2 2 1 1 4 2 5 2 3 3 5 3 2 5 5 2 6 2 5 5 3 5 5 5 5
R_3Mlo4lu2WdLyI7x CE Specialist IV Highways Preconstruction 2 2 2 2 2 2 2 3 2 2 3 2 3 3 3 3 2 3 4 2 4 3 3 3 2 3 5 5 5
R_2wboZURMDofjOSB Project Design Manager - GF District - Hlna Road Design 1 1 3 2 2 2 1 2 2 2 2 1 3 5 3 5 4 5 4 4 5 5 5 5 5 5 6 6 6
R_YXicvrJ6nfdaSJz 2 2 2 2 2 2 3 2 2 4 4 3 3 3 3 3 4 3 4 3 5 5 3 3 4 4 6 5 6
R_Umyt4KDgJsM7Bpn District Projects Engineer Engineering 1 1 4 2 2 2 2 4 2 2 5 5 3 4 3 3 4 3 4 5 5 4 4 4 4 4 5 5 6
R_yEnCBh1sWKRS1MZ Projects Engineer Great Falls 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 4 4 4 6 6 5
R_8B8kZEX8gknB4Pf District Design Supervisor Road Design 1 1 3 2 2 2 3 2 2 2 3 2 3 4 3 3 4 3 4 4 5 4 5 4 4 5 6 6 6
R_2tmqPgcYyXVtDBP Project Design Engineer Highways Bureau/Engineering 1 1 2 2 2 2 2 2 2 2 2 1 3 3 3 2 4 3 4 4 4 5 4 4 4 4 6 6 6
R_2uqQcZdnhzKODL0 Area Engineer Bridge 1 1 4 2 2 2 3 3 3 2 5 1 3 4 3 2 3 3 5 3 3 4 4 4 3 5 5 6 6
R_2Eyt8bbkBpvebRB District Preconstruction Engineer Glendive District 1 1 2 2 2 2 1 2 2 2 4 2 3 2 3 2 4 3 3 4 5 5 3 3 5 5 5 5 5
R_1176Ah6vPzzTrWN CE Spec IV Highways/Preconstruction 2 1 2 4 2 2 3 2 1 2 4 1 3 5 2 4 1 5 3 5 5 2 3 3 2 5 5 5 6
R_2y3qTjT7q0ZCuRz Bridge Area Engineer Bridge/Engineering 1 1 2 3 3 2 3 3 2 1 5 2 3 3 3 3 4 3 4 1 2 2 4 4 4 4 5 5 4
R_8cCTmXt4zzGbHkF Project  Engineer Consultant Design 1 1 2 3 2 2 1 3 2 2 5 2 3 5 3 3 3 5 3 3 4 4 5 5 3 5 6 5 6
R_3JmUpphTAMkMyOR Missoula Dist Preconstruction Engineer Missoula 1 1 5 2 2 2 2 3 2 1 4 4 3 4 3 2 3 3 4 3 4 4 4 4 4 4 1 1 6
R_2WGoJ6hIpTNOOWj Project Fatilitation Specialist Consultant Design 1 1 2 2 2 3 1 3 1 1 2 3 3 2 2 3 2 3 3 5 5 5 4 3 5 4 5 5
R_2wuClEWuMtVdyWD Civil Engineer Highways/Engineering 1 1 3 2 2 2 2 2 2 2 4 4 2 2 2 2 4 5 3 4 5 5 4 4 4 4 6 6 6
R_3KZzoTOR0GNcRrd Project Design Engineer Highways Bureau - Road Design 1 2 2 2 2 2 4 2 2 2 2 3 3 4 3 2 3 5 5 3 2 2 5 5 3 6 6 5 6
R_SI96EpxiXBc69Xz 2 2 2 2 3 2 3 3 2 2 3 3 3 4 3 3 3 5 5 3 5 4 4 3 5 5 5 6
R_24rqj7qqRRlMP4d Butte DESS Butte District 1 1 3 2 2 2 1 2 3 2 4 1 3 4 4 2 5 3 4 1 5 5 5 5 5 5 6 6 5
R_2diqSgVAgZaKy3u District Projects Engineer Missoula 1 1 2 2 2 2 1 2 2 1 3 2 3 3 3 2 3 3 3 3 2 2 3 3 4 4 3 4 5

1) When do you typically compute or identify this variable in the 5 / preconstruction stages?
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3 3 3 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 1 2 2 1 2 3 3 1 1 2 2 2 2 2 3 2 2 2 3 2 3 3 3 3 3 3 4 3 5 5 3 3 3 4 5 5 6
1 1 3 1 2 2 2 1 1 1 1 1 3 3 1 3 1 3 2 1 3 2 2 2 1 1 3 3 2 1 1 3 1 1 2 3 2 1 2 2 2 2 2 2 3 2 3 4 2 3 2 3 3 2 3 3 3 4
1 1 2 2 1 1 2 2 1 3 2 1 3 3 3 2 3 2 3 2 2 2 3 3 2 3 3 3 1 1 1 2 1 1 1 2 1 1 1 3 1 3 3 3 4 3 3 3 1 2 2 3 3 3 3 4 4 4
1 1 2 1 1 1 2 1 1 3 2 1 2 2 2 2 2 2 3 2 3 3 2 2 3 3 3 3 2 1 1 3 1 1 1 2 2 1 3 4 1 2 3 3 4 3 3 3 3 3 4 3 3 3 3 4 4 3
1 1 1 2 1 1 1 1 2 1 3 1 3 2 2 1 2 3 3 1 1 2 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 3 2 1 3 2 3 1 2 1 3 3 3 4 3 2 3
1 1 1 1 1 1 1 2 1 1 2 1 3 3 2 3 2 3 2 2 2 2 2 2 2 2 3 3 2 1 1 2 2 2 1 2 2 2 2 4 2 3 4 4 4 4 5 4 4 4 4 4 4 4 4 5 5 5
1 1 2 1 1 1 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 3 3 2 3 3 2 2 2 1 1 3 2 2 2 1 3 2 2 3 4 3 3 3 3 3 3 3 4 3 5 5 4 6 6 5 5 5
1 1 2 1 1 1 2 2 1 1 1 1 3 2 2 3 2 3 2 1 2 3 3 3 2 2 3 3 2 1 1 2 2 2 1 2 2 2 2 2 5 5 5 3 5 4 5 5 4 4 5 5 5 5 5 5 6 6
1 1 1 1 1 2 2 1 1 1 2 2 3 3 2 2 2 3 3 2 2 2 3 3 3 3 3 3 2 1 1 2 2 2 2 1 2 2 1 2 2 3 3 2 2 2 2 2 2 3 3 3 3 3 2 2 3
1 1 2 1 1 1 1 1 1 2 2 1 3 3 2 2 3 3 3 2 2 2 3 2 3 3 3 3 1 1 1 2 1 1 1 1 1 1 2 4 4 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5 4
1 1 1 2 1 1 1 2 1 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 2 4 4 3 3 2 2 5 5 4
1 1 2 1 1 1 1 2 1 3 2 1 3 3 2 2 2 2 3 1 2 3 3 3 2 2 3 3 1 1 1 2 1 1 1 1 1 1 1 2 1 3 4 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5
1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 3 2 2 4 5 2 2 3 2 3 4 2 4 3 5 5 4 4 4 4 6 5 5
1 1 2 2 1 1 2 3 1 2 2 2 2 3 2 2 2 2 3 2 2 3 3 3 2 2 2 2 2 1 1 3 2 1 1 1 3 1 2 3 3 3 3 3 3 4 3 4 3 4 3 4 4 4 4 5 5 5
1 1 1 1 1 1 2 1 1 1 1 1 3 2 2 3 2 2 3 2 2 2 2 2 2 2 3 3 1 1 1 2 2 2 1 2 2 2 2 2 3 3 3 2 2 3 3 3 4 3 3 4 4 3 4 5 5 3
1 1 1 1 1 1 2 2 1 1 2 1 2 3 2 2 3 2 2 2 1 1 2 2 3 3 3 3 1 1 1 1 1 1 1 3 2 2 2 3 2 3 3 3 3 4 3 4 4 5 3 3 3 4 5 6 6 6
1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 2 2 2 2 2 3 3 1 1 1 3 2 2 2 2 2 2 2 2 2 3 3 2 3 2 3 3 3 3 3 3 3 3 3 6 6 5
1 1 2 1 1 1 2 2 1 2 2 1 3 2 2 2 2 2 3 2 1 2 3 2 2 3 2 3 1 1 1 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 3 3 3 2 3 3 3 3 3 3 3 5
1 1 2 1 1 2 2 3 2 1 2 1 3 2 2 2 1 1 3 1 2 3 3 2 1 3 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 2 3 3 2 2 3 2 2 3 3 3 3 3
1 1 2 2 2 3 3 3 2 1 1 1 3 3 3 3 1 3 3 1 3 1 2 2 1 1 3 3 2 1 1 2 2 2 1 1 2 1 1 1 1 3 3 1 1 1 3 3 2 4 2 4 4 3 3 5 5 6
1 1 2 1 1 3 3 3 2 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 4 4 3 2 2 2 2 2 2 1 2 2 3 3 3 3 3 3 3 1 2 2 3 3 3 3 4 4 4
1 1 2 1 1 1 2 3 1 1 2 2 2 3 2 2 1 2 3 1 2 1 2 2 1 2 2 2 2 1 1 2 1 1 1 2 3 1 1 4 2 3 3 3 4 3 3 3 2 4 5 5 5 4 4 5 5 5
2 2 2 1 1 1 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 4 3 3 2 3 1 1 3 3 1 1 1 1 1 3 3 1 1 1
1 1 2 2 2 3 1 1 1 1 1 3 2 2 2 2 2 3 1 2 2 3 3 3 3 3 3 2 1 1 2 2 2 1 3 1 1 3 3 3 1 3 3 3 3 2 3 4 4 3 4 4 4
1 1 2 1 1 1 1 2 1 1 2 2 3 2 2 1 2 3 3 2 2 2 3 2 2 3 3 3 2 1 1 2 1 1 2 2 1 1 1 2 5 2 2 1 1 1 6 2 2 5 6 4 3 3 3 6 6 6
1 1 2 2 1 1 1 2 1 1 1 1 3 3 2 2 2 2 3 1 2 1 3 3 2 3 3 3 2 1 1 2 2 2 1 1 2 1 1 1 3 2 2 2 1 2 3 3 2 2 2 2 3 3 3 6 3 3
1 1 2 1 2 1 2 2 2 2 3 2 3 3 3 2 2 2 3 3 3 3 2 2 1 1 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 3 4 3 3 3 4 4 3 3 3 3 4
1 1 3 2 1 1 1 1 1 2 3 2 3 3 2 2 3 3 3 1 3 3 3 3 3 3 3 3 2 1 1 3 2 2 2 1 1 1 2 2 1 3 3 3 2 4 3 4 3 4 3 4 4 4 4 5 5 5
1 1 3 1 1 1 2 3 1 1 2 1 3 3 2 3 3 3 3 2 2 2 3 3 3 3 3 3 1 1 1 3 1 1 1 1 2 1 1 3 2 3 3 2 3 2 3 3 3 3 2 3 3 3 3 4 4 3

2) Rate the typical effort required to compute or identify each / variable 3) If required, what is the first stage that you could roughly compute or identify this variable?
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1 1 2 1 1 1 1 1 1 1 2 2 3 3 2 3 2 3 2 2 2 2 2 2 2 2 2 3 2 4 2 3 2 3 3 4 4 2 4 2 2 3 3 4 4 4 4 3 3 2 1 3 3 3 3 1 1 3
1 1 2 3 2 1 3 3 1 1 2 1 3 3 3 2 1 3 2 1 2 2 2 3 2 1 2 2 2 4 2 4 4 2 4 3 2 2 3 3 2 4 3 2 3 3 3 3 2 3 3 3 3 3 2 3 4 2
3 3 3 1 1 2 2 1 1 1 2 1 2 3 2 2 3 3 3 2 2 2 2 2 3 3 3 3 2 4 4 4 2 2 4 3 2 3 4 2 3 4 3 2 2 4 3 4 4 3 2 3 2 4 4 4 4 4
1 1 2 1 1 1 2 2 1 1 2 2 2 3 2 2 2 2 3 1 2 2 2 2 1 2 2 2 2 4 2 4 2 1 3 2 3 4 4 4 2 3 4 3 3 4 3 4 2 4 3 3 3 3 3 4 4 2
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 3 2 4 3 2 3 4 3 2 2 3 2 4 2 3 3 3 2 2 2 2 3 4 4 3 3
2 3 2 2 1 2 2 2 2 3 3 1 2 2 1 2 2 2 3 1 2 3 3 3 3 3 3 2 1 4 3 3 4 4 4 2 2 3 4 4 2 3 3 2 4 4 4 3 3 2 2 3 4 3 4 3 3 4
1 1 2 1 1 1 2 2 1 3 3 3 3 3 2 1 1 3 3 1 2 3 3 2 2 3 3 3 3 2 2 2 2 3 4 4 4 4 4 4 1 4 4 4 4 4 4 4 2 2 2 4 2 4 4 4 4 1
1 1 1 1 1 1 2 2 1 1 2 1 2 3 2 2 2 3 3 2 2 2 3 3 2 3 3 3 2 2 2 3 2 3 2 2 3 4 3 2 4 3 3 3 3 3 4 3 4 2 3 3 2 3 3 3 3
1 1 2 1 1 1 2 2 1 1 2 1 3 2 2 3 3 3 3 2 2 2 3 2 2 3 3 2 3 4 4 3 2 2 3 2 3 3 4 3 2 3 3 2 2 4 4 3 3 3 3 4 3 3 4 4 3 3
1 1 3 1 1 1 1 1 1 2 3 2 2 2 1 2 3 3 3 2 2 2 2 3 3 3 3 3 1 4 3 3 3 3 4 4 2 3 4 4 3 4 4 4 4 4 4 4 4 4 3 3 4 4 4 4 4 4
1 1 3 1 1 1 2 3 1 1 3 2 3 3 2 2 2 3 3 2 2 2 3 3 3 3 3 3 2 4 2 4 3 4 4 4 3 3 4 3 2 4 3 4 3 4 3 4 4 2 3 3 3 4 4 4 3 2

5) How influential do you believe this variable is on construction / cost? /   /  Note: For this questi...4) Rate the additional effort required to identify or compute this cost influencer at an earlier
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