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ABSTRACT

Conceptual cost estimating (CCE) is a challenging task for highway agencies due to the
limited design information available at early stages of project development. As a result, agencies
frequently experience large variance from the initial construction estimate to the final cost.
Despite the initial estimate’s low level of confidence, it is required for all highway projects as an
input to feasibility studies and to establish the project’s budget.

Many authors have explored the use of artificial intelligence and multiple-regression
analysis with promising findings to aide CCE. Unfortunately, at this writing, no highway
agencies are known to have implemented these data-driven techniques in practice. One of many
reasons for this situation is related to a belief that accurate quantities of work are required to
produce an accurate estimate. This approach is termed ‘bottom-up’ estimating and is clearly
impossible at the initial stage of project development. A second reason relates to the investment
necessary to create a reliable database structure that permits high-level statistical analysis.
Therefore, this thesis seeks to investigate improvements to data-driven, ‘top-down’ CCE
methods to enable practical application.

Firstly, a method to rationally select data used in the model is investigated. The analysis
reported in this thesis found that random sampling does not test the true performance of a model
for its future application. Secondly, a method to select input variables that have the largest
impact on predicting the construction cost but require the least amount of effort is proposed. The
models reached a point whereby expending additional effort to include more input variables did
not yield an increased performance and debunked the notion that ‘bottom-up’ estimating
approaches are intuitively more accurate. This finding is significant for practitioners as resources
expended to collect and store additional data points than required is wasted at the conceptual
stage.

Finally, a method to express the conceptual estimate stochastically is proposed. The
traditional deterministic approach of relying on a specific number communicates false precision.
This thesis proposes combining artificial neural networks with bootstrap sampling to create an
empirical distribution of the construction costs and better communicate a likely range of project

costs.
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CHAPTER 1. INTRODUCTION

The first estimate of a highway project’s construction cost is defined as the conceptual
estimate in the project development timeline shown in Figure 1. At the conceptual stage there is
little information known about a project and the detailed design has not yet begun. Further cost
influencing information established during project design stages is included when developing the
Design Estimates and Engineer’s Estimates. Highway agencies are therefore more confident with
these later estimates.

Conceptual

Project Stage: Design Advertisement Bid/Award Construction
Development
Time: >
. . Conceptual Design Engineer’s . .
Estimate: Estimate Estimates Estimates Bid Analysis Change Orders

Figure 1. Construction cost estimating timeline (adapted from Schexnayder et al. 2003)

The development of an effective conceptual estimate can be a challenging task for public
owners as these estimates are conducted prior to the design phase with minimal scope definition.
Despite the lack of knowledge about a project at the conceptual cost estimating (CCE) stage,
these estimates are required by public agencies to estimate the cost of projects for statewide
fiscal funding requirements (Anderson et al. 2007, FHWA 2015). This federal requirement is for
state departments of transportation (DOT) to develop a State Transportation Improvement
Program (STIP) detailing four years of upcoming projects (FHWA 2015).

Flyvbjerg et al. (2002) investigated public transportation projects and found that 86% of
projects had experienced cost growths since the initial estimate, on average they were 28%
higher than the initial estimate. That study included 258 transportation infrastructure projects
from different historical periods, geographical regions and project types, with a combined value
of $90 billion. Flyvbjerg et al. also discovered that there have been no improvements in the
accuracy of the initial cost estimate from the 70 years of data that was analyzed. In 2003,
Schexnayder et al. found that publicity called into question the “ability of departments of

transportation to forecast accurately and to control the final cost of their projects.”
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Cost estimates are typically classified in the following five groups (AASHTO 2013;
Turochy et al. 2001):

e Preliminary Engineering (PE),

e Right-of-way (ROW),

e Final Design — Plans, specifications and estimate (PS&E)

e Construction costs (CN), and

e Construction Engineering (CE)

PE concerns the costs associated with project advancement during the planning stage.
ROW is all costs associated with land purchase. PS&E is costs associated with producing the
final design, specifications and estimation of the construction costs prior to bid. CN is the
expenses associated with the construction process. CE covers the monitoring costs incurred with
management during the construction phase by the highway agency. This thesis concentrates
solely on estimation of the construction costs, or CN amount, specifically at the conceptual stage

of project development.

Motivation

One of the key problems at the CCE stage is the ‘limited information’ known about a
particular project’s scope during the planning stage (Schexnayder et al. 2003; AASHTO 2013).
Importantly, it is at the CCE stage where designers have the greatest ability to influence the end
project cost. This introduces the ‘cost estimating dilemma’ as shown in Figure 2 (Bode 2000).
Confidence in CCE enables designers to alter designs and realize savings when they have the
greatest ability to influence the cost of the project. This ‘dilemma’ highlights the importance of
an accurate conceptual estimate as the cost of construction can be “impacted significantly by

decisions made at the design stage” (Gunaydin and Dogan 2004).
High

........... Designer’s knowledge
about cost

Designer’sinfluence
on cost

Knowledge / Influence

Low

Project development time

Figure 2. Cost estimating dilemma (adapted from Bode 2000)
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Estimating construction costs at the conceptual stages of project development is critical
for decision-makers to determine a reasonable project budget and make decisions regarding the
project’s ultimate feasibility (Harbuck 2007; Lowe et al. 2006; AASHTO 2013). Early
construction cost estimates are “the basis for key financial decisions. Thus, the inability to
accurately estimate the project costs can result in poor financial decisions” (AASHTO 2013). If
the conceptual cost estimate is too high, then a project may be erroneously rejected based on an
unfavorable benefit-to-cost ratio. On the other hand, if the cost estimate is too low, then a
project may be found to be feasible when in fact it is not and should have been rejected
(AASHTO 2013).

Highway agencies need reasonable accuracy in estimating conceptual construction costs
to ensure that tentative construction programs optimize available fiscal year funding. Under-
estimation during the CCE stage can result in agencies running short of funds to complete its
annual construction program. Over-estimating costs can result in too few projects being selected
for funding in a given fiscal year, this leads to not having enough projects ready and advertising
them before they are truly ready to let, or worse, the loss of federal funding (MDT 2007).

The design budget, a major portion of the preconstruction budget, is typically established
as a percentage of estimated construction costs (Jeong and Woldensenbet 2012). It therefore
follows that if the construction cost estimate is low, the design budget will also be less than the
amount required. The amount of a project’s budget allocated to design was found to directly
influence its overall construction cost growth from the early estimate (Gransberg et al. 2007).
Gransberg et al.’s work observed that up to a point, the greater the investment in design the
lower the construction cost growth from its initial estimate. Thus, underfunding the design
budget yields the potential for construction budget overruns. As a result, the need to carefully
calculate construction costs at an early stage to ensure an appropriate budget for the design and
control cost growth to the project becomes even more important.

The four key motivators for studying conceptual estimating, discussed above, are real
issues faced by highway agencies. This research is part of a bigger research project to develop an
artificial neural network to provide a data-driven conceptual cost estimating tool for Montana
Department of Transportation (MDT). Much of the research in this thesis is leveraging the

artificial neural network created for MDT.
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Content Organization

Chapter 2 contains background for the reader. Specifically the state-of-the-practice of
CCE is discussed, background to artificial intelligence in the area of construction cost estimating
and application of ‘top-down’ construction cost estimating. At the end of Chapter 2 the specific
problem statements in the report are stated.

Chapter 3 highlights the overall approach and validation methodology. In this chapter the
creation of a database and artificial neural network model are introduced. This includes data
collection methods, selecting input variables and validation techniques. Later chapters utilize the
model created in Chapter 3 to answer the problem statements set in Chapter 2. Chapter 3 finishes
with a diagram of the global methodology.

This thesis contains three journal articles shown in Chapters 4, 5 and 6. The chapters are
stand-alone documents, each with a specific focus on conceptual estimating of highway projects
using data-driven techniques. Whilst the focus of each article differs, they all contribute to the
overall research objective. The chapters commence with data sampling techniques for artificial
neural networks (Chapter 4); then the focus shifts to quantifying the level of effort expended to
conduct the conceptual cost estimate (Chapter 5); finally the report investigates the ability to
communicate the conceptual cost estimate stochastically through a range interval (Chapter 6).

Chapter 4 will be submitted for publication in the American Society of Civil Engineers
Journal of Computing in Civil Engineering. This chapter proposes a method that could be used to
sample projects to be included in the artificial neural network database of historic projects. This
chapter highlights to highway agencies that performance of data-driven CCE models need testing
against a sample of data that is reflective of the future distribution of project types to be
predicted.

Chapter 5 will be submitted for publication in the American Society of Civil Engineers
Journal of Construction Management in Engineering. This chapter specifically focuses on
measuring the level of effort expended to conduct the conceptual estimate. More specifically a
method is proposed for estimators to focus on collecting input variables which require a low
level of effort but have a high impact on the construction cost estimate.

Chapter 6 will also be submitted for publication in the American Society of Civil
Engineers Journal of Risk Management and Uncertainty. This chapter investigates the bias

associated with point estimates developed at the conceptual stages. Further it investigates a
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method to produce an empirical distribution of expected construction costs through the use of
combining artificial neural networks and bootstrap sampling. Research is validated by comparing
the actual final construction cost to that expressed by the range estimate.

Chapter 7 summarizes the main conclusions from the papers and addresses the problem
statements and objective of this report. Additionally, Chapter 7 discusses the limitations of those
conclusions. Finally, Chapter 8 outlines the key contributions to the conceptual estimating body

of knowledge and areas for future research.
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CHAPTER 2. BACKGROUND

This chapter benchmarks the current state-of-the-practice used to estimate the conceptual
cost of projects at highway agencies. It then discusses the application of artificial intelligence to
the field of conceptual estimating at highway agencies. Finally the chapter poses the specific

research problems investigated in this thesis.

Current State-of-the-Practice

The American Association of State Highway and Transportation Officials (AASHTO)
recently released a Practical Guide to Cost Estimating (2013) to provide a nationally recognized
set of procedures to conduct the cost estimating at highway agencies for all project development
stages. That guidebook describes conceptual estimates as an early projection of cost when
limited information is known about a project. The suggested method for estimating at the
conceptual stage is to develop statistical relationships between cost factors for completed
projects and use these to predict future construction costs. This is suggested through the use of
parametric cost estimating relationships, such as cost-per-mile of a highway or the cost-per-area
for bridge, and adjusted through historical percentage cost factors. The guidebook suggests
storing historical data in a spreadsheet or computer software such as AASHTOWare ® Project
BAMS/DSS. To reflect uncertainty at the conceptual stage the guidebook developed
classifications with accepted uncertainty summarized in Table 1. The accepted estimate ranges at
the planning development stage, shown in Table 1, are referenced in later chapters to make

comparisons with the performance of the data-driven techniques investigated.
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Table 1. Cost Estimating Classification (adapted from AASHTO 2013)

et Project Maturity
o . . .
Development o thq proj ect Purpose of the Estimate Estimating Estimate
definition Methodology Range
Phase
completed)
Cor.lceptual Estlmatlng - . 50% to
0to 2% Estimate Potential Funds Parametric
+200%
. Needed (20-year plan)
Planning C wual Estimati
o.nc'e p ta’ BSUmating = Parametric or -40% to
1% to 15% Prioritize Needs for Long- S .
Historical Bid-Based +100%
Range Plans (10-year plan)
. De51g.n Estimating - Estabhsh a Historical Bid-Based -30% to
Scoping 10% to 30% Baseline Cost for Project and
. or Cost-Based +50%
Program Projects
Design Estimating — M
Design 0% 1080% | Project Budgets against | Historieal Bid-Based 10% to
g ° ° ) . & & or Cost-Based +25%
Baseline
Cost-Based or
. . Compare with Bid and Obligate | Historical Bid-Based -5% to
Final D % to 1009
fna Lestgn 90% to 100% Funds for Construction Using Cost Estimate +10%
System

The National Cooperative Highway Research Program (NCHRP) produced Report 574

on Guidance for Cost Estimation Management for Highway Projects during Planning,

Programming and Preconstruction (Anderson et al. 2007). That NCHRP guidebook was created

to identify cost estimating management practices for each phase of project development in order

to reduce cost escalation on highway projects. Various management strategies are presented to

reduce the risk of cost growth. Under the planning development section methods identified

included estimate management, risk management, document quality and estimate quality. The

estimate quality section in the report identifies six tools including the use of computer software,

conceptual estimation, estimate reviews (internal and external), project scoping and right-of-way.

Surveys investigating current practices have been completed by Byrnes (2002) and

Turochy et al. (2001). Both were conducted for estimating construction costs of highway projects

at the conceptual stage. Although the actual technique and terminology varies by state, both of

these studies found that CCE approaches utilized by highway agencies are generally classed into

one the following three categories:

e “cost-per-mile” of typical sections of highway or bridge,

e cstimating approximate quantities of major work items, or
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¢ 1o documented or uniform method, instead using experience and engineering

judgement.

The report by Turochy et al. (2001) was completed for Virginia Department of
Transportation (VDOT) in response to “attention from news media and elected officials” due to
major increases in highway project cost estimates since the planning stage. This further
highlights the motivation for creating an accurate conceptual cost estimate and the public
scrutiny faced by highway agencies for failing to do so.

It was discovered by Byrnes (2002) when he surveyed all 50 state DOTs that no agencies
were at that stage employing sophisticated mathematical models. The same finding was reached
by Turochy et al. (2001) with the suggestion that there is a reliance on the experienced personnel
at highway agencies to conduct the conceptual estimate. Turochy et al. (2001) specifically
identified the potential to develop models for estimating highway project costs through the use of
completed cost data with a large number of projects. The details of possible models, proven in

the literature, are described in the artificial intelligence section that follows.

Artificial Intelligence

The advancement in digital technology and data storage capacity has meant that state
DOTs have an abundance of data available from past projects to estimate the cost of future
projects with. The literature shows that two data-driven cost estimating methods, artificial neural
networks (ANNSs) and multiple-regression analysis (MRA), have been proven to provide
reasonable estimates of the conceptual costs of highway projects (Bell and Ghazanfer 1987;
Hegazy and Ayed 1998; Mahamid 2011). Both techniques link an historical database of project
attributes to the actual construction cost. These relationships identified within the data can then
be used to forecast the construction cost of future projects.

MRA is the development of a regression equation to link independent project variables to
the cost (Turochy et al. 2001). The equation assigns weights to each of the independent attributes
through the method of least error (Turochy et al. 2001). Future construction costs can be
estimated using the same equation weights but with the new independent variables. The
downside of MRA is that an assumption must be made about the relationship between the terms
(Sonmez 2008). Many authors of the MRA literature simplified this required assumption to be a
linear regression equation (Bell and Ghazanfer 1987; Sonmez 2011; Mahamid 2011). Alternative

relationships could be investigated such a quadratic correlation between terms. Multivariate
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Adaptive Regression Splines (MARS) is another such relationship with emerging publications, in
this relationship instead of one linear line there are multiple ‘piecewise’ linear sections (Haleem
et al. 2013).

ANNSs do not require a discrete assumption that a link exists between the construction
cost and the variables (Kim et al. 2004). The model uses artificial intelligence to find patterns
within the database to link these to the dependent variable (construction cost). The ANN model
creates layers of arbitrary data to transform the input variables to the construction cost. Historical
data is used to train the ANN model and recognize relationships within the database to the
dependent variable. This trained model is then used to forecast future construction costs by
looking for similar patterns and predict the dependent variable.

Bell and Ghazanfer (1987) published one of the first MRA models for predicting the cost
of highway construction maintenance projects with a database of 174 projects. When validated
against test projects it could predict the construction cost to within 17% on average. This error is
well within the range recommended in the AASHTO Practical Guide to Cost Estimating, for
which the conceptual estimate should be in the range of -40% to +100% of the final construction
cost (AASHTO 2013) shown in Table 1.

Since Bell and Ghazanfer published their model more than 15 authors have published
data-driven CCE models with similar promising results using MRA and ANNs at the CCE stage.
In 1992, Sanders et al. published an MRA model with only a 6% error on test projects. Creese
and Li, in 1995, published an ANN model with 8.24% estimating error for the construction costs
of timber bridges. In 1998 Hegazy and Ayed published an ANN model that could estimate the
construction cost of highway projects in Newfoundland, Canada, to within 19.33% of the actual
cost. Kim et al. (2004) completed a comprehensive study comparing the performance of ANN,
MRA and case-based reasoning to calculate the construction cost of residential buildings in
Seoul, South Korea. A total of 530 projects were used in the database, far exceeding the number
of projects used by other authors. The estimating accuracy of the model was 3.0% and 7.0% for
ANN and MRA models respectively. Details of all 16 studies are analyzed in depth in the
literature review sections of Chapters 4 and 5.

Despite promising results from the literature, no DOT is using a data-driven CCE model
to assist them in calculating the construction costs of their projects. It is however known that

CCE conducted by DOTs lack results with high confidence (Chou et al. 2006; Byrnes 2002;
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Walton and Stevens 1997). Turochy et al. (2001) concluded that DOTs are not employing
computer model techniques to improve estimate confidence due to:

1. Resistance to replace engineering judgment with computer procedures, and

2. Long term reliance on the skills and experience of planners and engineers.

One benefit of data-driven estimation, such as the ANNs or MRA, is the ability to
remove bias and possible pressure to keep estimates under published budget ceilings, a challenge
estimators regularly face (Anderson et al. 2007). Flyvbjerg et al. (2002) discovered that
underestimation is the rule rather than exception for transport infrastructure projects merely to
keep the project from being cancelled before construction begins. Computer tools using historic
project information to predict future construction costs can remove the optimism at the CCE
stage by relying on real construction data, and taking the emotion and possible bias out of the
process.

Multiple researchers have proven the ability of ANNs to produce superior results to MRA
in the field of construction cost estimating (Petroutsatou et al. 2012; Kim et al. 2004; Moselhi
and Siqueira 1998), some researchers have proven the contrary (Gunduz et al. 2011; Setyawati et
al. 2002). Many of the research problems investigated in this thesis use ANNs. This was due to a
superior performance of this tool over MRA for the data collected in this research project.
Despite this, the use of MRA will be briefly investigated in Chapter 5. This research does not

attempt to investigate whether ANN models or MRA models are the most accurate.

Top-down Cost Estimating

One approach to estimate construction cost is for the estimator to break up the project
into individual activities and then estimate the cost of each activity based on the resources of
materials, labor and plant required (Kim et al. 2012). This approach is termed ‘bottom-up’
estimating. Each resource is then assigned unit rates and the summation of each activity cost is
the estimated total project cost. These rates often come from historical bid price averages that
estimators have recorded at the highway agency (Byrnes 2002). Byrnes’ research concluded that
likelihood of estimate accuracy was directly proportional to the amount of bid tabulation data the
estimators included in the database.

An issue with this approach at the conceptual development stage is that quantities are
uncertain because the design is far from complete (Kim et al. 2012). A superior approach at the

conceptual stage is to focus on the “larger picture” (AASHTO 2013). This is termed a ‘top-
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down’ cost estimate and is commonly used at the conceptual stage when project definition is still
fluid (Kim et al. 2012). The ‘top-down’ estimate focuses on project characteristics such as
location, traffic management considerations, utility impacts and other complexities that drive the
construction cost (AASHTO 2013).

Top-down cost estimating principles are applied in this research to develop the database
used for the construction of an artificial neural network and its resultant cost estimate. Top-down
characteristics are used as the input variables to the estimating model. Further details on the
types of cost influencing information employed are discussed in Chapter 3, the overall approach

to research methodology and validation.

Problem Statement

The literature has shown that artificial intelligence methods can be applied to produce a
conceptual estimate with output of suitable accuracy. However, it has been noted that data-driven
methods are not being used in practice by highway agencies in the United States. Additionally,
conceptual cost estimates are frequently inaccurate and expose highway agencies to public
scrutiny over unacceptable construction cost growth.

The main objective of this research is to identify tools that highway agencies may utilize
if they choose to adopt data-driven techniques from the literature, thus improving the practical
application of data-driven methods. This objective is explored by focusing on the following three
questions:

1. Is there a rational method to sample data that is to be used for artificial neural

networks?

2. Does adding input attributes (project detail) to ‘top-down’ estimating methods

actually yield further improvements in model performance?

3. What data-driven method could be used to better communicate the confidence level

attached to the conceptual estimate?
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CHAPTER 3. OVERALL APPROACH TO RESEARCH METHODOLOGY
AND VALIDATION

This thesis focuses on conceptual cost estimating of highway projects at one highway
agency, the Montana DOT otherwise known as MDT. As such, data used in this study was
collected for 189 different highway projects for 5 years of construction at MDT. The section
begins by discussing the method used to develop a base ANN used as part of this project.

Finally, the global methodology used to meet the thesis objectives are discussed.

Base Artificial Neural Network
Prior to answering the three main research objectives (Chapters 4, 5 and 6) a database of
project attributes and construction costs required development. In this section the method to
select the project attributes (input variables) and creating the database is discussed. Additionally
the validation technique for evaluating the performance of data-driven methods is discussed.
Once the database was organized in a commercial spreadsheet, a commercial plug-in to that

spreadsheet was used to for the ANN prediction model.

Input variables

Bell and Ghazanfer (1987) concluded that input variables selected have a significant
effect on the prediction capability of the model. The same deduction has been reached by at least
two other authors of data-driven CCE models (Gunyadin and Dogan 2004; Setyawati et al.
2002). It is during the early stages of creating a data-driven model that attributes need selecting
as model-creators usually only have a one-time commitment to collect the cost predictors (Smith
and Mason 1997).

Studying previous literature on data-driven CCE models yielded four publications most
relevant to highway construction cost estimating. Mahamid (2011) investigated 9 variables in the
data-set collected. Al-Tabtabai et al. (1999) also included 9 variables in the data-set collected.
Hegazy and Ayed (1998) included 10 input variables. Bell and Ghazanfer (1987) included 2-5
input variables depending on the specific highway project type.

Through meetings held at MDT and the literature studied above, 29 possible input
attributes were initially suggested for predicting a typical project’s construction cost. The

attributes selected for the final model are typically chosen through trial and error, therefore
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having more input variables available rather than less seemed logical. The technique of selecting
the final input attributes through trial and error was reported in at least five other studies on CCE
in the construction industry (Creese and Li 1995; Hegazy and Ayed 1998; Bell and Ghazanfer
1987; Gunduz et al. 2011 and Petroutsatou et al. 2012).

Highway agencies typically construct a broad range of project types including bridge
construction, pavement preservation, highway maintenance and miscellaneous tasks. The three
major work-types conducted at MDT are shown below:

e Pavement Preservation — minor rehabilitations and resurfacing

e (Construction — major highway rehabilitations

e Bridge — new bridge construction or major rehabilitation of a bridge

To be able to concentrate data collection efforts and create a methodology, one major
project type was selected for investigation in this thesis: pavement preservation projects. This
was selected from interviews with MDT as the staff expected that these projects should be the
most predictable and provide a suitable test for the estimating methodology.

The desired 29 input attributes, refined from literature review and meetings at MDT, are
shown in Appendix A. Each input attribute was aligned with possible measures from the
databases discussed in the following section. The 29 attributes were further reduced to the 17
most relevant to pavement preservation cost indicators shown in Table 2. These were selected
based on guidance from MDT personnel and data availability for pavement preservation projects.
An example is the exclusion of bridge type (steel/concrete), MDT deemed that typically the only

bridge work in pavement preservation projects is for deck maintenance and repairs.
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Table 2. Proposed input variables trialed in Chapters 4, 5 and 6.

Proposed input attributes
Urban or rural project
Site topography (steep, flat or undulating terrain)
Construction on Native American Reservations
Start and End Stations, Length and Width
Number of bridges in scope
Design Average Annual Daily Traffic (AADT)
Typical Section (depths of surfacing)
Design speed(s)
Intersection signalization and signage
Right-of-way acquisition costs
Traffic Control - closures or detours
Curb & Gutter and Sidewalk
Contract Time
Letting Date
Bridge deck areas
Geotechnical - subsurface & slope recommendations
Extent of Utility relocations and costs

Previous literature published on ANNs and MRAs have used between 2 and 9 input
variables. Additionally it was discovered that the final input variables for many publications of
data-driven CCE models were selected based on trial and error. The 17 available input variables
shown in Table 2 were used as a base in each of Chapters 4, 5 and 6; however, not all 17 input

variables were used in each of the models.

Data collection efforts
Because MDT had not yet developed a database specifically for ‘top-down’ estimating of
highway projects, this was included as a task in the overall project MDT research project 8227-
001. Multiple databases required combining, along with manual cross-checking, to obtain the
attributes necessary for estimating the construction cost with ‘top-down’ variables. The databases
referenced in Figure 3 are:
e @IS: Roadway attributes contained in the geographical information system (GIS)
database.
e TIS: Project attributes entered from the construction drawings in the transportation
information system (TIS) database.
e PPMS: Data recorded on the Program and Project Management System (PPMS) during

the preconstruction activities.
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e PFR forms: Conceptual design details completed as a report in the Preliminary Field

Review (PFR) forms. This information is textual and the report is required for the

transportation committee approval of the conceptual estimate.

e Site Manager: Data stored during the construction phase. Of specific interest in this

database was the final construction cost (CN Actual), the dependent variable in the cost

estimating model.

GIS TIS PPMS PFR forms
Roadway Design
attributes characteristics

Project
#

Scope Length Width

# Lanes

6196

6233

7256

ANN computing

—_—

Site
Manager

CN
Predicted

CN Actual

Figure 3. Combining multiple databases for cost estimating model

Many of the databases required manual inspection. For example lengths were included in

multiple databases (TIS, PPMS and PFR forms), but discrepancies between these numbers

required verification. An analysis of the data collected for each input variable is shown in

Appendix A. Data extracted from PFR forms required manual extraction and entering. A

complexity rating chart was developed for reading the PFR forms, shown in Appendix B,

detailing complexity levels and information to be extracted from the forms.

Project construction costs required inflation to a base year to reflect the rising

construction costs. The data was collected for construction years 2009-2013. An inflation factor
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of 3% per annum was applied to the actual construction costs for all projects from the expected
mid-point of construction to align with the year 2014 (base-reference). The 3% rate was
nominally selected with advice from meetings at MDT and is the rate currently applied to all
projects in their construction program. Future research could investigate a more suitable inflation

value, however this was not an objective of this thesis.

Validation techniques

In order to validate the usefulness of a data-driven estimating model, the prediction
model must be tested. Prediction ability of a model is most easily tested with projects where the
final construction cost is known in order to compare the predicted cost to the actual. A test
selection of projects from the database must be retained from training the ANN or MRA model.
Typically a randomly selected 20%-30% of the data is retained for testing the model
(Petroutsatou et al. 2012; Moselhi and Siqueira 1998). For this project 20% was selected in a
selection process shown in Chapter 4, the method of which is a major contribution of this thesis.

The error in the data-driven CCE models collected for comparison was calculated using
the Mean Average Percentage Error (MAPE) of the testing data. This method is commonly used
by authors of data-driven CCE models in the construction industry (Petroutsatou et al. 2012;
Gunduz et al. 2011; Mahamid 2011; Lowe et al. 2006; Kim et al. 2004). Calculation of the
MAPE is furnished using Equation 1 (Mahamid 2011).

100%\ N [P; — 4
MAPE(%)=( )Z| T | (1)
n i=1 L

where:

n = Number of data-points used to test the model
P; = Predicted construction cost using the data-driven CCE model for the i project

A;= Actual construction cost from the historical records for the i project

Global Methodology
The overall methodology and validation techniques used in this research is illustrated in
Figure 4. The base model introduced in Chapter 3 is used to answer all three research problem
statement questions. As shown in Figure 4, the motivation for the problem statements were
discovered through content analysis and literature reviews into data-driven CCE models and

current state-of-the-practice.
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Figure 4. Global methodology covered in this thesis
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CHAPTER 4. RATIONALLY SELECTING DATA FOR HIGHWAY
CONSTRUCTION COST ESTIMATING AT THE CONCEPTUAL STAGE
Gardner, B., Gransberg, D. D., and Jeong, H. S. (2015). “Rationally Selecting Data for Highway

Construction Cost Estimating at the Conceptual Stage.” To be submitted to ASCE Journal of

Computing in Civil Engineering.

Abstract

Over the past 30 years there has been little improvement in construction cost estimating
confidence, despite significant advancement in computing capabilities and data availability.
During this period the literature reveals a number of highly accurate prediction models, however
many are supported by databases containing very few data points. The practicality of these
models is limited due to their narrow scope and lack of defined sampling techniques used to
select their data points. Models to estimate construction costs at early stages of project
development using artificial neural networks and multiple-regression analysis have been
developed for some time, but they are not being used in practice by US state DOTs. This paper
investigates how data point selection limits the practical performance of these models and a
contributing reason why sophisticated models have not yet been implemented by DOTs. A total
of 20 conceptual cost estimating models, using artificial neural networks and multiple-regression
analysis, were assessed in this study. While a data-driven conceptual cost estimating model may
appear accurate, not appropriately sampling the data inputs will result in a model with little
practical application and therefore not suitable for use in industry. This study found that data
used to train conceptual cost estimating models need to include attributes reflective of the
projects in the total population of data. As a result, this research proposes a rational method to

sample project data.

Introduction
Previous literature has proven the ability of ANNs and MRA to predict the conceptual
construction cost of projects to suitable accuracy, this was discussed in the artificial intelligence
section of Chapter 2. However, it was also noted in Chapter 2 that no highway agency is
currently known to utilize this data-driven, ‘top-down’ artificial intelligence method to conduct
their conceptual cost estimate. This is despite the proven ability of data-driven methods and the

continued lack of confidence with the conceptual development stage estimate of construction
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cost (Flyvbjerg et al. 2002; Schexnayder et al. 2003). This chapter investigates the practicality of
models published in the literature and investigates contributing reasons why they have not yet

been implemented in practice.

Background

Literature supports the case that more data in the prediction model results in improved
reliability and accuracy. When Bell and Ghazanfer (1987) created an MRA model using 174
highway projects their research concluded - “larger data-sets tend to reinforce the reliability of
the model.” This judgement is supported by many authors of data-driven CCE models (Setyawati
et al. 2002, Gunaydin and Dogan 2004, Tatari and Kucukvar 2011 and Gunduz et al. 2011)
where these authors had between 16 and 74 projects in their databases and used a mixture of
ANN and MRA for their prediction models.

In 1998 Elhag and Boussabaine recommended that future CCE models should exploit
more than the 30 training data points they used in their research to improve the model accuracy.
Following this, in 2002, Emsley et al. created a model with nearly 300 projects to specifically
address the deficiencies in the ANN created by Elhag and Boussabaine. Other data-driven CCE
models created with a notable size of database: Kim et al. (2004) and Lowe et al. (2006) used
530 and 286 historical projects respectively for their databases.

Weaknesses in the size of training data contributing to the limited practical application of
data-driven CCE models has been suggested but not yet thoroughly investigated. Setyawati et al.
(2002) recommended that the effects of more data in building and construction estimating need
to be further studied. This paper aims to contribute to understanding the size of training data

selection and model reliability in relation to the construction industry.

Objective

The objective of this paper is to evaluate the use of data-driven CCE models to help
determine the limiting factor for practical use in industry. As such this paper explores 20
construction CCE models using ANN or MRA to determine the impact that the quantity of data
utilized for training has on model accuracy. Further, this research investigates a rational
sampling method for when the entire data population is not utilized. Of the CCE literature
reviewed there were no reports on the sampling method used for training or testing the model or

size of the total population of historical projects available.
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Methodology

Literature on published CCE models involving ANN and MRA were reviewed. It was
important to identify only models that were relevant to this study. Three criteria were used to
ensure this:

1. the study is related to the construction industry,

2. input variables are obtainable at the early design stage,

3. the output variable is a construction cost estimate of the project.
If the input variables of the data-driven CCE models were simply the bill of quantities then it
was deemed a ‘bottom-up’ or a detailed estimate of the construction cost and these models were
excluded from the study.

A commercial search tool for document content (Bazeley and Richards 2000) was used to
search for relevant publications, organize and record the analysis. A broad search was conducted
initially of all the collected publications. The number of case studies was then reduced to only 16
publications containing 20 data-driven CCE models with the necessary information to conduct an
effective content analysis. The estimating error of the data-driven CCE models and the number
of data points used were recorded for comparison and to investigate alignment with literature

suggestions on this topic.

Results
The data gathered from CCE publications are shown in Table 3 and outline the brief
scope for the types of projects being predicted. Some publications analyzed their database using
both ANNs and MRA to compare the relative performance of the two different techniques,
whilst others just performed one technique. The model error was calculated using the MAPE
method presented in Chapter 3, Equation 1. Where authors had not used this method then our

research team recalculated the error to enable direct comparisons of performance.
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Table 3. Construction cost estimating models studied

Data ANN MRA
CCE literature int estimating | estimating | Brief project scope
potnts error error
Petroutsatou et al. (2012) | 149 4.65% - Tunnels in Greece
Mahamid (2011) 131 - 13.0% Highway (various sizes)
Gunduz et al. (2011) 16 5.76% 2.32% Light rail track works in Turkey
Lowe et al. (2006) 286 - 19.30% Buildings in United Kingdom
Petroutsatou et al. (2006) | 149 - 9.6% Tunnels in Greece
Kim et al. (2004) 530 3.0% 7 0% Residential Buildings in Seoul,
South Korea
Gunaydin and Dogan RC 4-8 story residential buildings
30 7.0% - .
(2004) in Turkey
Emsley et al. (2002) 288 16.6% - Buildings
Setyawati et al. (2002) 41 13.4% 9.2% Education Building Construction
Al-Tabtabai et al. (1999) | 40 9.1% - Highway Construction
Highway Construction in
Y —_
Hegazy and Ayed (1998) | 18 19.33% Newfoundland, Canada
Elhag and Boussabaine 30 17.80% - School Construction
(1998)
Moselhi and Siqueira | 5, 10.77% | 14.76% | Steel framed low-rise buildings
(1998)
Creese and Li (1995) 12 8.24% - Timber Bridges
Hich Bri ——
Sanders et al. (1992) 11 - 6.0% Urban Highway Bridge widening
in Alabama
Bell and Gh fi i i
ell an azanter 174 B 17.0% H1ghway Constrgctlon
(1987) Maintenance projects

— = data not applicable to that publication

Since Bell and Ghazanfer (1987) concluded that “larger data-sets tend to reinforce the

reliability of the model” DOTs investigating the possibility of data-driven cost estimating would

expect equal if not more training data to be used in the data-driven CCE models for reliability

and confidence. Figure 5 shows that only three authors in the study population used more than

the 174 historical construction projects that Bell and Ghazanfer used in their data-driven CCE

model in 1987. This is surprising given the explosive computing capabilities and data storage

capacity that has occurred since Bell and Ghazanfer published their results. Of the data-driven

CCE models studied six authors reached the same conclusion as Bell and Ghazanfer in 1987, yet

there are still many published models using very few historical construction projects in their

ANN or MRA analysis.
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Figure 5. Timeline showing the database used in data-driven CCE models.

Literature from data-driven CCE models support the hypothesis that lack of data will

result in unreliable CCE (Bell and Ghazanfer 1987; Elhag and Boussabaine 1998;

Setyawati et

al. 2002; Gunaydin and Dogan 2004; Tatari and Kucukvar 2010; Gunduz et al. 2011) and could

therefore be a reason for limited industry use. However, findings from the content analysis of the

20 data-driven CCE models investigated in this study show when the accuracy of

the prediction

model is plotted against the number of data points, in Figure 6 there is little to no trend. The

arrow shows the direction of the trend expected from literature findings, as the number of data

points used in the model then the estimating error should decrease. There is an unexplained

cluster of points in the bottom left of the plot; these case studies are circled and report high

accuracy with a low number of data points used.

Accuracy of CCE Models vs Database Size
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Figure 6. Accuracy of data-driven CCE models published and database size
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The content analysis results from Figure 6 conflict literature suggestions, whereby
increasing the database within the CCE models will result in improved reliability and accuracy
(Bell and Ghazanfer 1987; Elhag and Boussabaine 1998; Setyawati et al. 2002; Gunaydin and
Dogan 2004; Tatari and Kucukvar 2010; Gunduz et al. 2011). An explanation for this could be
that some of the published data-driven CCE models have been built for projects of very narrow
scope.

Creese and Li (1995) created a model specifically for timber bridges using only 12
projects. Sanders et al. (1992) limited scope of their data-driven CCE model to bridge widening
only, using 11 projects. Sanders et al. recognized that the model was only useful for interstate
bridge widening’s stating that the “model presented in this report obviously has very limited
application.”

Gunduz et al. (2011) created a model for light rail track works with only 18 projects and
achieving nearly 2% prediction accuracy. Validation of the light rail model was based on only
two projects. Additionally, the light rail model estimated the trackworks portion of the rail
projects only and did not account for other infrastructure in the project (Gunduz et al. 2011).

Data-driven CCE models that are only accurate for a very narrow scope of work do not
provide general utility due to the extremely limited group of projects on which they can be
applied. Typical DOT projects range in scope from simple to complex and would therefore
require many different data-driven CCE models to meet their needs. Furthermore, even if the
models could theoretically be built, many if not most would not contain enough data points to be
reliable.

It leads one to suspect that CCE publications using a small number of data points in their
analysis may not have included the entire population of historical projects for the defined scope
and purpose of the estimating model. While the literature does not fully explain the rationale for
not using the entire population, there are potentially two practical reasons for this:

1. the researchers did not have access to the complete agency project databases, or
2. the effort of collecting each project was significant and tedious resulting in a small
number of historical projects used in the analysis.
Of the CCE literature reviewed there were no reports on the sampling method or size of the total

population of historical projects used for training or testing the model.
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Discussion of Results

Literature study supports the hypothesis that increasing the number of training data points
in CCE models improves the accuracy and reliability (Bell and Ghazanfer 1987; Elhag and
Boussabaine 1998; Setyawati et al. 2002; Gunaydin and Dogan 2004; Tatari and Kucukvar 2010;
Gunduz et al. 2011). However a content analysis of 20 data-driven CCE models found no trend in
the improvement of performance with increased number of data points. Instead, this study found
that some estimating models were reporting very accurate results using few data points to train
their data-driven CCE models. Further analysis revealed that these models may be of very narrow
scope, limiting the practical application for use by DOTs.

Published work in the manufacturing (Bode 2000) and aeronautical industry (Rajkumar
and Bardina 2003) reached the same conclusion; more data improves accuracy of the data-driven
model. In these fields more data used in training produced improved predictions, however this
improvement had diminishing returns after a point. Rajkumar and Bardina produced over 7000
data points in the laboratory for their ANN model studying aecrodynamic coefficients.

The challenge with data collection in the construction industry is the availability of data.
Historical data used in CCE models comes from completed projects which can cost millions of
dollars each. The number of projects that can be included in the database is limited to those
completed each year, which is often quite low due to the high costs of each. More importantly,
each construction project is normally unique in many ways due to the scale of the transportation
infrastructure. Unlike products in the manufacturing industry, data cannot simply be regenerated
in a laboratory thousands of times. The effort required to collect construction project data
produces the need for a rational data selection method, allowing an individual to accurately
represent the entire project population with a sample.

This research next investigates and then proposes a possible sampling method by
studying the distribution of key attributes in a project population to rationally sample the data.
The purpose of this is to propose a method going forward for sampling the data to improve
model credibility. Such a method could increase the application of data-driven CCE models for

DOTs.
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Rational sampling method

Proposed Technique

A rational sampling method should be used to select data-points for data-driven CCE
models when the entire population of data is not going to be utilized. This ensures that the data
sample appropriately represents the population being modeled, and information is not
unintentionally misleading. The proposed technique is shown in Figure 7. First the population of
historical projects is defined in terms of scope and size. Defining the scope of the project allows
readers and practitioners to understand what the data-driven CCE model can be used for (it’s
purpose). It is also important to understand the sample of projects actually used in the prediction
model relative to the total population. This is similar to reporting on a non-response rate by

statisticians when completing surveys (Dillman et al. 2009; Fink 2009).

1. Define the |:> 2. Distribute key ['; 3. Represent the

population input attributes population in the
sample

Figure 7. Proposed rational sampling steps

The distribution of key input variables must also be studied. These are anticipated to be
input variables that have the greatest contribution to the end accuracy of the model. Not selecting
a representative distribution of key attributes in the sample may limit the practical application of
data-driven CCE models for predicting the construction cost of the population in the future.

Next, if the entire population of data is not going to be used in the CCE model then a
sample size needs to be nominated. It is justifiable to not use the entire population of data due to
computing limitations or time and effort restraints to collect the entire database for all attributes,
especially when the population is large with a broad scope. Finally the distribution of key
attributes in the population needs representation in the sample to be reflective of the population.
To demonstrate how this rational method could be applied an illustrative example is provided in

the following section using an ANN data-driven model.

Illustrative Example

Step 1: Define the population: A total of 850 projects were made available to the

research team from MDT for analysis. This database included all highway projects completed

from 2007 until 2015. The population was further defined to pavement preservation projects
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only. This left a total of 431 historical projects available. Five consecutive years of projects in
the design phase from 2009-2013 were selected and the population further defined to chip seal,
thin lift overlay or mill & fill projects, the three main major work-types, all less than $5M in
value. A total of 189 projects remained for analysis — this was our research population of data.

Step 2: Distribute key input attributes: The base ANN model developed in Chapter 3,

with a database of 189 projects defined above, was trained with a randomly selected 80% of the
projects. This trained model was then tested with the remaining 20% of projects, these test
projects were not used to train the model. From the tested model two of the input variables were
deemed to be the most sensitive to the construction cost, this was the highway classification and
length of the projects. The distribution of these two attributes across all 189 projects was

analyzed visually and is shown in Figure 8a.

Table 4. Input variables used

Proposed input attributes

Urban or rural project

Site topography (steep, flat or undulating terrain)
Construction on Native American Reservations
Start and End Stations, Length and Width*
Number of bridges in scope

Design Average Annual Daily Traffic (AADT)
Highway Classification*

Typical Section (depths of surfacing and aggregate)
Traffic Control - closures or detours

Curb & Gutter and Sidewalk

Contract Time

Bridge deck areas

Geotechnical - subsurface & slope recommendations

Extent of Utility relocations and costs
*denotes attributes analyzed

Step 3: Represent the population in the sample: A test sample of 38 projects (accounting

to 20% of the database) was separated from the 189 projects in the database. The 38 projects
were selected and removed by iteratively selecting projects until distribution of the two key
attributes (from Step 2) aligned with the distribution in the entire population. This left 151
projects available to train a model. Selecting test data reflective of the population in this
proposed method will test the true performance of the cost estimating model against its intended

end-use.
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Next, a control sample of 85 projects was selected from the remaining 151 available
projects in the training data-set. This was completed iteratively in order to match the distribution
of highway classification and length from the population in the control sample. The scale match
of the distribution for projects in the control sample against the population is shown in Figure 8a.

For the purposes of validating this method two additional samples of 85 projects were
selected from the 151 training projects, these are Sample’s I and II. In each of the samples one of
the two key attributes were deliberately misrepresented relative to the control sample. The
highway classification was misrepresented in Figure 8b (Sample I) and the lengths of the projects
were misrepresented in Figure 8c (Sample II) relative to the distribution in the control sample.

Results: The 14 attributes from the 151 remaining historical projects were then used to
train the ANN model against the actual construction costs from the database. Two different
artifical neural network configurations were trialed. The Generalized Regression Neural Network
(GRNN) was found to perform superior to the Multi-Layer Feedforward (MLF) network also
available in the software. The historical projects not included in the training of the artificial
neural network were then tested in the model. The plot of predicted construction costs versus the

acual construction cost for the 38 test data-points is shown in Figure 9.
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Figure 9. Validating the artificial neural network with the test data
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The MAPE for the test 38 projects was 22.9%. This is well within the expected accuracy
of the construction estimate at the planning stage suggested in the AASHTO Practical Guide to
Cost Estimating (2013) where -40% to +100% is accepted at the conceptual development stage,
shown in Table 1 (Chapter 2). Further improving the accuracy of this model was not the goal
here, so research into sampling this population of 151 training projects continued. A separate
model was trained and tested for the Control Sample, Sample I and Sample II. The same 38
projects were used to the test the error of these trained models.

Results of all four ANN models created are shown in Table 5. It was not surprising that
no single sample out-performed predicting the construction costs of the 38 test projects than
using the entire population (151 projects) to train the model. This is in agreement with literature,
from the construction industry and other fields, that states the use of more data improves the
accuracy and reliability of the model (Bell and Ghazanfer 1987; Setyawati et al. 2002; Gunaydin
and Dogan 2004; Tatari and Kucukvar 2010; Gunduz et al. 2011; Rajkumar and Bardina 2003;
Bode 2000).

Table S. Error in the testing data

Sample MAPE with the test data
Entire Population (151 projects) 22.9%
Control Sample (85 projects) 32.5%
Sample I (85 projects) 38.0%
Sample II (85 projects) 40.5%

Sample I and Sample II also performed notably worse at predicting the construction cost
in comparison to the Control Sample. On visual inspection of Sample II (Figure 8c) the
distribution of ‘length’ attributes was much more significantly misrepresented than the ‘highway
classifications’ in Sample I (Figure 8b) as the extreme highway length values (high and low)
were truncated. This only resulted in a small increase in the estimating error from 38.0% to
40.5%. This finding suggests that some attributes are more sensitive to sufficient representation
in the sample database and do not need to exactly match that of the population. Further research
needs to be completed to find a relationship between the level of representation in the sample

required to appropriately predict the construction cost without using the entire population of data.
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Other industries are focusing on ‘big-data’ for the data-analytics and decision analysis.
The transportation industry is currently lagging behind in its use of historical data, specifically in
the area of cost estimating. Data-driven techniques for CCE of highway projects have proven
results in the literature. However, when DOTs are searching for published data-driven CCE
models they need to be aware of the limits to their practical application; a data-driven CCE
model may appear to perform well but without rational sampling of the data and suitable scope

definitions a DOT cannot be confident in these techniques.

Conclusion

Literature from both construction and manufacturing industries support the concept that
more data increases the accuracy and reliability of data-driven CCE models (Bell and Ghazanfer
1987; Setyawati et al. 2002; Gunaydin and Dogan 2004; Tatari and Kucukvar 2010; Gunduz et
al. 2011, Bode 2000; Rajkumar and Bardina 2003). Despite this widely held belief, a content
analysis of 20 data-driven CCE models revealed that some models had a very low prediction
error despite using few projects to train the model. A reason for this result is the narrow scope of
the projects included in the database and lack of test data. These two attributes make the use of
data-driven CCE models undesirable for use by DOTs.

Despite the small databases in the CCE models, the literature has remained silent on
methods used to select the data used. To help improve the validity of CEE models for future
industry use, this paper suggests a rational method to effectively represent a database without
using all data points. An illustrative example using artificial neural networks was provided to
demonstrate how such a method would be applied in practice. It was found that key attributes
need sufficient representation in the sample of data.

Regardless of the vast improvement in computing technologies over the past 30 years, no
great advancement in CCE accuracy has been made, preventing DOTs from using these
technologies within their work. This paper found contributing reasons for this decision to be that
many published data-driven CCE models have a very narrow scope, lack of confidence in the

sizes of some databases used and no sampling method used for selection of projects.
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CHAPTER 5. QUANTIFYING EFFORTS FOR DATA-DRIVEN
CONCEPTUAL COST ESTIMATING FOR HIGHWAY PROJECTS
Gardner, B., Gransberg, D. D., and Jeong, H. S. (2015). “Quantifying Efforts for Data-Driven
Conceptual Cost Estimating For Highway Projects.” To be submitted to the ASCE Journal of

Construction Engineering and Management.

Abstract

A modern dilemma has emerged in light of ever improving technological advances;
enlarged data-collection efforts do not yield a proportional increase in knowledge. Storing more
data than is necessary, without receiving any useful additional benefit, is not only resource
intensive but also requires additional funding to collect and manage it. Data-driven models using
historical project attributes to estimate future construction costs, such as multiple-regression
analysis and artificial neural networks are both proven techniques found in the literature that
highway agencies could adopt for conceptual estimating. This research noted that the literature
using these techniques have been solely focused on estimating model performance with little to
no focus on the level of effort required to conduct the conceptual estimate. It is commonly
believed that using more input data enhances estimate accuracy. However, this paper will test the
concept that using more input variables than necessary in the conceptual estimate
overcomplicates the conceptual model without a commensurate increase in accuracy. Conceptual
estimates using the minimum amount of input data to produce an estimate with a reasonable
level of confidence is more cost effective than current practices. It allows designers and
estimators to focus their time on advancing project development, instead of investing time into
projects that may never advance past the initial conceptual stage. Furthermore, reducing data
requirements saves highway agencies time and money on storage of unnecessary project
information. This paper quantifies the effort expended to undertake estimates for both artificial
neural network and multiple-regression analysis models used for the conceptual estimate. The
paper concludes that input variables which have a large influence on the final predicted cost and

require a low amount of effort are desired in data-driven conceptual cost estimating models.

Introduction
In public works, the budget for a project is often established at a point in project

development where the estimator has the least amount of design detail from which to compute an
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estimate (Bode 2000). Taking federally-funded highway projects as an example, the budget is
formally set when the project is assigned a federal project identification number (PIN) and
included in the STIP (FHWA 2015; Anderson et al. 2007). The estimate is usually used during
early planning stages to conduct initial feasibility studies, and both engineers and planners
realize that the accuracy of the initial cost estimate is a function of the level of design detail
available at the time of the estimate. To account for the anticipated change in project scope as the
development process proceeds, a standard contingency based on a percentage of the total
estimate is added (Minassian and Jergeas 2009). This kind of estimate is termed a ‘top-down’
estimate because it relies on parametric cost factors such as lane-miles, location, project type,
etc. rather than a ‘bottom-up’ estimate whose basis are the quantities of materials needed on the
project (Kim et al. 2012).

The conundrum faced by engineers in public works is that in order to receive the
authorization to expend funds to advance the project to completion the official budget is based
on a figure derived with the least amount of project-specific technical information (Bode 2000;
FHWA 2015). If the figure is too conservative, the project may not be receive authorized funding
necessary to advance to the next preliminary engineering stage. As a result, it becomes important
to take the initial cost estimate seriously and utilize the available information that has the highest
influence on the bottom-line while not allocating precious time and resources to a project that
ultimately will not advance. Additionally, the time period to conduct the estimate is typically
limited in the feasibility stage (Gunduz et al. 2011), but the estimate requires sufficient accuracy
for benefit-cost analysis and prioritizing budgets (Anderson et al. 2007). Therefore, the objective
of this paper is to explore a solution that can be used to complete critical initial estimates with

high impact data that requires the minimum level of effort for the estimator to obtain.

Conceptual Cost Estimating Effort at Highway Agencies
Highway agencies cannot afford to over-invest their design and planning resources in
projects at the conceptual stage. If less effort can be expended at the conceptual stage, then an
estimator’s time can be better applied in the later design estimating stages shown in Figure 1
(Chapter 1). Any investment in the project at the conceptual stage could be rendered worthless if
a project is not selected for further development following a benefit-to-cost analysis or a needs
assessment. In the context of structural steel buildings only 15 percent of those that reach the

conceptual stage ever get constructed (Moselhi and Siqueira 1998).
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No matter the CCE technique employed by highway agencies or suggested in the
literature, a particular level of project scope definition (or conceptual design effort) is required in
order to conduct a cost estimate. Sanders et al. (1992) observed this balancing act between
efforts expended and estimate accuracy, stating “there is an inverse relationship between the
accuracy of an estimate and its preparation cost. At some point, increased accuracy cannot justify
the additional costs incurred.” The earlier that the initial estimate is developed, the lower the
level of effort expended on project definition required for CCE, which translates into lower costs
and fewer resources. This means that estimators and designers can focus their efforts on projects

which have advanced past the planning stage and are likely to reach construction.

Data-driven CCE Models — Prior Studies

CCE techniques reviewed in this research include both ANN and MRA models. The
benefit of data-driven techniques is the ability to use historical project information for
forecasting and the speed at which this can be achieved. Gunduz et al. (2011) recognized this
stating “reliable cost estimates are required within a very limited time period at the feasibility
stage,” and the research in their paper concentrated on the use of ANN and MRA models to
produce fast and accurate results.

Performance of data-driven CCE models is subject to variations in model architecture and
parameters; this includes the input variables used, number of hidden layers and nodes in the
ANN model, and data-set size. The effects of model architecture and parameters have been
studied in data-driven CCE models published in the literature (Setyawati et al. 2002; Mahamid
2011; Petroutsatou et al. 2012). A detailed content analysis on the number of input variables is

completed in the next section.

Literature analysis

Previous authors of data-driven CCE model research have remained silent on the effort to
collect, store and use databases to conduct the cost estimates. As a result, this research analyzed
the data-driven CCE models published in the literature to observe how many input variables are
being used and resultant error. Collection and storage of data from historical projects requires
time and resources of which highway agencies have a limited quantity. Further cost influencing

information gathered later in the project life-cycle can be included in more detailed ‘bottom-up’
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design stage estimates. The literature analysis was a starting point of this research to see if

additional inputs improve estimating accuracy.

The same 16 publications on data-driven CCE models from Chapter 4 were studied. From

each of the publications both the MAPE and the number of input variables used to produce their

best performing model was collected. The results of the content analysis are shown in Table 6.

Table 6. Construction cost estimating models studied to understand input variables

Inout ANN MRA
Author Varig bles estimating | estimating Brief Project Scope
error error
Petroutsatou et al. 0 .
(2012) 5 4.65% - Tunnels in Greece
Mahamid (2011) 9 - 13.0% | Highway (various sizes)
Gunduz et al. (2011) 17 5.76% 2.32% | Light rail track works in Turkey
Lowe et al. (2006) 12 — 19.30% | Buildings in UK
Petroutsatou et al. 0 .
(2006) 5 - 9.6% Tunnels in Greece
Kim et al. (2004) 9 3.0% 7.0% Ef)ile‘;en“al Buildings in Seoul,
Gunaydin and Dogan 3 0% 4-8 story residential buildings in
(2004) e B Turkey
Emsley et al. (2002) 5 16.6% - Buildings
Setyawati ct al. (2002) 2 13.4% 9.2% gi‘gi‘g‘;ﬁi‘lﬂdmg
Al-Tabtabai et al. (1999) 9 9.1% — Highway Construction
Hegazy and Ayed 10 19 33% Highway Construction in
(1998) =270 B Newfoundland, Canada
Elhag and Boussabaine 4 17.80% - School Construction
(1998)
1(\;[8321)111 and Siqueira 4 10.77% 14.76% | Steel framed low-rise buildings
Creese and Li (1995) 3 8.24% - Timber Bridges
Sanders ct al. (1992) 10 _ 6.0% | Urban Highway Bridge
widening in Alabama
Bell and Ghazanfer 5 17.0% Highway Construction
(1987) B e Maintenance projects
Note: — = indicates that data is not applicable to that publication

The results from the literature content analysis found in Figures 10a and 10b show that

previous publications are achieving lower error through more input variables. Both plots in

Figure 10a and 10b show diminishing returns with a smaller reduction in error as each input

www.manaraa.com




35

variable is added, this is highlighted by the best fit curves being negative power curves. The
relationship is much stronger with the MRA models (Figure 10b) in the literature with the power

curve coefficient of determination (R?) value being 0.7211. When the obvious outlier in the ANN

group (Figure 10a) is removed then the R? value in that plot increases from 0.1462 to 0.335.
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—_ — %3 N
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(=]
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versus Model Prediction Error

A R2=10.1462
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Number of Input Variables
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Figure 10. Literature analysis of inputs versus error

A weakness of this conclusion is that the literature is for projects of many different
scopes. Additionally, none of these past studies have compared their input variables with the
perceived level of effort to obtain them for every project, meaning that effort required to
populate the model and its performance have not been directly compared. This leads one to infer
that the results reported in the literature contain an underlying assumption that each input
variable requires equal estimating effort. Therefore, that in the body of knowledge will be filled
by the results of this chapter, which will specifically quantify input variable effort and prove that
not all input variables require the same level of effort to compute.

The requirement to minimize CCE effort is also recognized in other industries outside of
construction. Verlinden et al. (2008) created an ANN to calculate the cost of sheet metal
manufacturing for customers; the research recognized the necessity to provide customers of sheet
metal a swift quotation, albeit at the cost of possibly reduced accuracy. In another study,
Walczak (2001) created an ANN to predict a foreign exchange rate. Walczak’s study found there
was no need to utilize the entire available database and that only a few years of data was
necessary to provide reasonable confidence. Walczak concluded that this would have a
significant effect on model development cost savings, where “the cost is not only financial, but

also the development time and effort.”(Walczak 2001).
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Research objective

This paper proposes a new CCE objectives hierarchy, illustrated in Figure 11, to evaluate
the performance of data-driven CCE models. Previous data-driven CCE models are focused on
the prediction accuracy (Objective 1), but this research investigates the effort expended

(Objective 2) in gathering the input information for the models.

Objective 1:
Maximize the
prediction accuracy

Goal:

Predict project
construction cost at
conceptual stage

Objective 2:
Minimize the effort
required

Figure 11. Proposed dual-objective hierarchy tree for conceptual cost estimates

The objective of this paper is to evaluate the effort expended for data-driven CCE models.
Specifically the paper focuses on two questions:
1. Can a framework be created to select inputs that help meet the dual-objective goal of
maximum performance with minimal effort?
2. Is there an optimum number of input variables that highway agencies should be
collecting to minimize the effort for data-driven CCE models?
The outcomes of this research should help both researchers and practitioners to focus on both
objectives during the CCE stage, allowing them to estimate the projects construction cost at an
early stage of project development with the least amount of effort but with the optimal

performance.

Research Methodology

To validate the input selection framework and determine if an optimum level of input
variables exist a combination of perceptional survey data was used with real project data to
predict the construction cost. The research steps are shown in Figure 12 below. In step 1, a
survey was conducted to grasp perception on the level of effort required for different inputs to
the conceptual estimate. The dual-objective input selection method, proposed as part of this
research, was then utilized in step 2. Next, the estimating error for each model was recorded
using the proposed input selection order (step 3a) and then it was repeated using the input

selection order in reverse (step 3b). Finally step 4 compares the cumulative perceived effort for
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each construction cost estimate to the estimating error achieved. In this step the proposed input

selection method (step 3a) is compared to completing the task in reverse order (step 3b) in order

to validate framework effectiveness.

Step 1) Conduct survey
on possible input
variables

Step 2) Select the input
variable order using
proposed method

Step 3a) Predict
construction cost using
proposed input
selection order

Survey

Step 3b) Predict
construction cost using
the reverse input
selection order

Step 4) Compare
prediction error to the
cumulative perceived

effort for both methods

Figure 12. Research steps

A survey was conducted at MDT to understand the perceived level of effort required to

estimate the construction cost of a project at the conceptual stage. Firstly, two days of interviews

at MDT established the key attributes of a project that influence the construction cost to aid the

survey development, this was discussed in the base-model development (Chapter 3). Following

these interviews, and a review of literature, 29 variables were identified that have an influence on

the construction cost of MDT’s highway projects, these are shown in Table 7. The research team

then assigned the attributes into one of three categories:

1. Roadway: an attribute associated with information about the proposed project location.

2. Design: an attribute determined during the design process.

3. Construction administration: attribute is related to the construction activity.

These categories were selected to reflect the location where the data was being received

from at MDT. For example the majority of roadway characteristics were generally sourced from

the Data and Statistics Bureau at MDT which store Geographical Information Systems (GIS) on

roadway attributes.
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Table 7. Cost influencing attributes identified at MDT

Design related attribute Roadway information attribute
1 | Design AADT 19 | Urban or rural project
2 | Design speed 20 Construcjuon on Native American
Reservations
3 | Start and end stations, length and width 21 | Site topography
4 | Intersection signalization and signage 22 | Existing surfacing conditions and depths
5 | Horizontal and vertical alignment 23 | Number of intersections in project
6 Extent Of changes to the existing 24 | Number of bridges in the project scope
intersections
7 | Typical section Construction administration attribute
8 Curb, gutter and sidewalk 25 | Traffic Control - closures or detours
. . Environmental permitting requirements-
9 | Bridge type and complexity 26 wetlands
Volumes of excavation .
10 and embankment 27 | Letting Date
11 Geotechnical ) subsurface & slope 28 | Context sensitive design issues, controversy
recommendations
12 | Bridge deck area 29 | Contract time

13 | Hydraulic recommendations and culverts

14 | Storm sewer extents

15 | Bridge span lengths

16 | Foundation complexity of the bridge

17 | Right-of-way acquisition and costs

18 | Extent of utility relocations and costs

Survey respondents were asked, amongst other questions, to answer the following on
each of the 29 attributes identified:
1. rate the typical effort required to compute or identify this variable, and
2. how influential do you believe this variable is on the construction cost of a project?
The entire survey template is shown in Appendix C. Questions were designed with an ordinal
(categorical) scale where respondents are required to select the most suitable answer as shown in

Figure 13 (Fink 2009; Fowler 2009).
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Question 1) Rate the typical effort required to compute or identify this variable:
Rating: L = Low effort, M = Medium time H = High effort
information and effort involved. Possibly site
available, desktop visits, site
study investigations and
approximations.
Points: 1 2 3

Question 2) How influential do you believe this variable is on construction cost:
Answer: Does not Minor Average Major influence
influence cost influence influence
Points: 1 2 3 4

Figure 13. Ordinal scale used for the two survey questions

The survey was distributed at MDT through an email link to all 84 preconstruction

personnel that were deemed suitably qualified to respond. A total of 35 responses were received

with four of these excluded as non-responses. This resulted in a 37% response rate. Responses

were received from all five bureaus and from a large range of job titles. Whilst there is “no

agreed-upon standard for a minimum acceptable response rate” (Fowler 2009) the researcher

team were satisfied that the 37% response rate was reflective of the entire population.

Input variable selection

To meet the dual-objective goal during CCE it was proposed that input variables be

selected starting with those that require a low level of effort to compute or identify but also have

a high influence on the construction cost of the project. This is shown in Figure 14 below with

the input variables suggested to be selected in the bottom right hand quadrant.

— [|HighEffort; | High Effort;

5 | Low High

C

o | Influence Influence

2

S |LowEffort; | Low Effort;

& | Low High
Influence Influence

Influence

Figure 14. Selecting input variables to meet the dual-objectives of CCE
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To validate this selection process the research team combined the perceptional survey
results with performance of a data-driven CCE model created specifically using projects that the
survey respondents design and manage at MDT. Two data-driven CCE modeling techniques,
ANN and MRA, were utilized with the database developed in Chapter 3 to predict the
construction costs of projects. Input variables were systematically added to the data-driven CCE
model starting with those in the bottom right quadrant of Figure 14 to meet the dual-objectives of
the main CCE goal. Further inputs were added based on their distance from the bottom right
quadrant in Figure 14, this is explained in more detail later on in this paper. In each of the

models the performance and total perceived effort from all input variables used were recorded.
Results

Survey response

The average results of the survey from 31 respondents are shown in Figure 15, the
numbers relate to the 29 attributes from Table 7. Respondents rated the effort on a 1-3 ordinal
scale whilst the influence of this variable on the construction cost was rated on a 1-4 ordinal
scale, these scales are shown in Figure 13. As such quadrants were arbitrarily assigned on both
scales to visually divide up the results and aid the input variable selection process. The units on
both axis correspond to the ordinal response scale from Figure 13, they are referred to as
“points” from here on.

Visually, there are a number of interesting results which can be observed in Figure 15.
Firstly, only 5 of the 29 attributes shown in Table 7 fall in the bottom right quadrant of the plot:
attributes MDT perceive as requiring a low amount of effort to collect which also have a high
influence on the construction cost of the project. It was not a surprise that three are roadway
characteristics, easily identified once a project has been selected and its location confirmed.
These characteristics include whether the project is going to be in an urban environment, the
topography of the road and the number of bridges within the limits of the project. Bridge deck

area was the only design factor identified in the bottom right quadrant.
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Identifying Effort and Influence of Input Variables
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Figure 15. Results of MDT cost estimating survey

Secondly, all the attributes in the top right quadrant of the Figure 15 are design factors.
This is intuitively logical as design requires significant effort to be expended and the outcome
should have a large effect on the construction cost. Finally, very few variables occupy the top left
quadrant. Those that do occupy this quadrant are bordering other quadrants inferring that any
attribute requiring a significant amount of effort to be expended by MDT is going to have a
significant influence on the construction cost of the project. This observation is also reinforced
by the fact that two-thirds of all variables are in the bottom left or top right quadrant (i.e

variables are either low-effort/low-influence or high-effort/high-influence variables).

Case-study

The findings from the survey were used to validate the dual-objective input variable
selection method proposed as part of this research. The research team proceeded to build a data-
driven CCE model, which has the least amount of effort with suitable performance. As such as
many of the 29 attributes were included in the model, one at a time, starting with the variable
closest to the most preferred to the least preferred variables (as shown in Figure 16). The formula
to calculate each distance was based on the Euclidean distance, and shown in Equation 2

(Danielsson 1980).
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Distance to ideal input (points) =/ (x; — A)? + (y; — B)? (2)
where,

x; = the average perceived cost influence from the survey.

A =4, the maximum construction cost influence based on the ordinal survey rating and the ideal
value as shown in the survey questions (Figure 13).

y;= the average perceived effort from the survey.

B =1, the minimum effort rating based on the ordinal survey rating and the ideal value as shown
in the survey questions (Figure 13).

i = the input attribute being measured, ranges from 1 to 29.

Least
Preferred
Variables

High

Most
Preferred Ideal Input

Data Management Level of Effort
Low

Variables Variable

Low High
Influence on the Construction Estimate

Figure 16. Preference for selecting input variables

The research team then used the base ANN with 17 input variables. In this chapter the
database is tested with both ANN and MRA models. Because the perceptive survey for effort and
cost influence was created for generic project types, some of the project attributes were not
relevant to pavement preservation projects. As a result, 13 of the 17 input variables were chosen
as the perceived effort would have been most relevant to pavement preservation were selected.
These were selected based on guidance from MDT personnel and the ranked order is shown in

Table 8 from the most preferred input variable to the least preferred.
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Table 8. Input variables selection order and distance from ideal input

. . Average perceived Average perceived Distance to
Proposed input variable 0l f deal i .
selection order influence © .ort ideal input (po‘1nts)
(points) (points) Refer to Equation 2
19. Urban or rural project 3.48 1.10 0.56
21. Site topography (steep,
flat or undulating terrain) 3.26 1.29 0.80
3. Start and End Stations,
Length and Width 2.97 171 1.25
1. Design AADT 2.74 1.29 1.29
7. Typlcal Section (depths of 319 203 131
surfacing and aggregate)
2. Design speed(s) 2.67 1.16 1.34
4. Int?rsectlon signalization 287 1.90 1.44
and signage
25. Traffic Control - closures )84 200 153
or detours
8. Curb & Gutter and
Sidewalk 2.97 2.13 1.53
29. Contract Time 2.45 1.58 1.65
27. Letting Date 2.35 1.29 1.67
11. Geotechnical - subsurface 339 265 1.76
& slope recommendations
6. Extent of Utility relocations 3.26 271 1.86
and costs

Input variables were added by selecting them in the order starting with the shortest

distance from the ideal input variable to the largest distance. The average survey results for the

influence and effort are shown in Table 8 along with the calculated distance to the ‘ideal input

variable’ shown in Figure 16. Each time a new input variable was added to the model the MAPE

of the model with the test data was recorded. To verify the usefulness of the input selection

method the process was repeated in the reverse order (starting with the largest distance from the

ideal input variable).

To be able to compare the results from all the models, the same 151 projects selected in

Chapter 4 were used to train each model and the same 38 projects were used to test the model

and calculate the MAPE. The 38 projects were selected through the sampling methodology

developed in Chapter 4.
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ANN Results

A commercially available ANN modelling software package was used to train and then
test the database. Initially, only one input variable with the shortest distance to the ‘ideal input
variable’ shown in Figure 16 was used to train and then test the first model. Input variables were
then added to the model one at a time, getting further from the ‘ideal input variable’. Each time
the MAPE and cumulative effort points of the prediction model was recorded. The process was
then repeated until all 13 input variables were included in the ANN model. The process was then
conducted in reverse order by adding input variables in the opposite fashion. Figure 17 illustrates

the results of each approach.

Analyzing the Performance of ANN Model
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o
S A ©®
<§: 150 A. @ -
= A @ @ ° .9
%n 100 °
S
£
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[ ] 0.0
A Ak Aol AA.‘.
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Cumulative estimating effort (points)
’ A Dual-objective selection method @ Reverse ‘

Figure 17. ANN performance and effort expended

Figure 17 shows that when input variables are added in the order suggested by this
method then the model can more quickly reach reasonable accuracy with less effort. This method
minimized the number of input variables required to achieve the lowest possible MAPE. Once
the first 6-8 variables, from Table 8, were added to the model then adding further inputs yielded
no further reduction in estimating error. The corresponding model reached around 25% MAPE
estimating error with a cumulative effort of 7.5 points. With the reverse order of input variable
selection a comparable level of error was not reached until around 17.5 to 20 points of effort.

This is over twice the level of estimating effort for the same performance. Both methods show
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that there is a point where adding additional input variables, or expending more effort, results in
diminishing returns and little or no improvement in performance in predicting construction costs
for the additional effort. When the point of diminishing returns is reached the overall goal of the
estimating model is reached: maximum performance with minimal effort. This also effectively
debunks the notion that increasing the number of input variables will increase the accuracy of the
estimate.

The authors speculate that selecting input variables which require a low level of effort
essentially means that variable is known to a high degree of confidence at the early estimate
stage. Two examples are the 'length' of the project and if the project will be in an 'urban or rural'
setting. These two variables both require a low level of effort, thus are known to a high degree of
confidence at the early stage. Because these two variables were also perceived by MDT as
having a high influence on the construction cost then the input selection process proposed in this
research picked these two variables amongst the first 6-8 variables.

On the contrary, design variables require a high level of effort at the early stage.
Although they have high influence on the construction cost many were excluded from the first 6-
8 variables. Most design factors do have a perceived high impact on the construction cost, but, at
the early stage there is a low level of confidence with those numbers. Two such examples are the
geotechnical complexities and utility replacements required. At the early stage highway agencies
only have a very vague estimate of those variables, thus the confidence in the top-down number
is very low at the conceptual stage. However, it is recognized that their designed outcome does
have a significant impact on the cost. The data inputs for design variables in the conceptual
estimating model are sourced from project information at the early stage, thus they are not inputs
known to a high level of confidence and contain plenty of variability from this initial estimate to
the final estimate. This is unlike variables such as the 'length' or 'urban/rural' input variables
which are known to a high level of confidence at the early stage and also have a high impact on

the construction cost.

MRA Results

The same database was next used with commercial software for MRA with a linear
assumption. When the process was repeated with MRA the rational selection method proposed in
this research also proved successful to meet both objectives, as seen in Figure 18. It is evident

that the ANN model’s performance was superior to the MRA, 25% error using ANN compared
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to 50% with MRA. These errors are both within the range suggested by the AASHTO Practical

Guide to Cost Estimating (2013) at the planning stage. The superior performance of ANN is in

agreement with several data-driven CCE models found in the literature (Petroutsatou et al. 2012;

Kim et al. 2004; Moselhi and Siqueira 1998). However, this conclusion is not universal in the

construction literature with some authors reporting the opposite findings (Gunduz et al. 2011;

Setyawati et al. 2002). The ongoing debate with both techniques was the reason that this chapter

differed from Chapters 5 and 7 by testing the database with both MRA and ANN in order to

contribute to other literature findings.
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Figure 18. MRA performance and effort expended
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It is interesting to note that with the MRA model when using the reverse order of input
variables never reaches the optimal prediction accuracy of around 50%. Also the regression
analysis actually performs better with fewer input variables and at 10 input variables, the MAPE
starts increasing. Without a rational input variable selection method, such as trial and error
commonly employed in the literature (Hegazy and Ayed 1998; Kim et al. 2004), one may
conclude that a given set of data is not capable of predicting the construction costs to reasonable

accuracy.

Discussion
The research in this paper has shown that data-driven CCE models do not need to include
all project attributes to predict the construction cost to reasonable accuracy at an early stage of
project development. If highway agencies are going to employ data-driven methods for CCE
then the implications of this research highlight:

1. A rational input selection method, such as the one suggested in this paper, can be used to
yield suitable input variables with low effort and contribute to acceptable performance.

2. Once highway agencies are confident in the input variables required to estimate the
conceptual cost of projects, the collection of further information is unnecessary. It only
consumes data storage space and requires time/effort from personnel whose efforts could
be better applied elsewhere.

3. The results imply that suitable confidence in estimating the conceptual costs of projects
can be achieved with lower project definition if the correct input variables are selected.
The final implication of this study is the most important: at the conceptual stage of a

project life-cycle, an early estimate with readily available input variables can achieve satisfactory
accuracy. This is better than a slightly more accurate result at a later stage of design
development. It should be noted that this research is based on the analysis of perceptional data
from a single DOT agency and as such, its conclusions cannot be generalized without regard to a
specific agency’s attribute impact and effort perceptions being checked. Nevertheless, the
overarching concept of using the high impact/low effort variables should be true for most, if not,

all public transportation projects.
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Conclusion

ANN and MRA models constructed for this research both reached the goal with the dual-
objectives of low effort and high accuracy faster using the input selection method proposed in
this research. Adding further input variables using either model technique resulted in diminishing
returns of the model performance. Findings from this research have positive implications for
practitioners willing to employ data-driven conceptual cost estimating techniques.

The paper’s primary contribution for both researchers and practitioners is to highlight for
the first time that while increasing the number of input variables in an early estimate may appear
to enhance estimate accuracy on an intuitive basis, this is not necessarily true. The MDT case
study showed that for both the ANN and MRA approaches that adding detail to the model

reached a point of diminishing returns at roughly 6 to 8 high impact/low effort variables.
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CHAPTER 6. STOCHASTIC COST ESTIMATING OF HIGHWAY
PROJECTS AT THE CONCEPTUAL STAGE USING BOOTSTRAP
SAMPLING
Gardner, B., Rueda, J., Gransberg, D. D. (2015). “Stochastic Cost Estimating of Highway
Projects at the Conceptual Stage using Bootstrap Sampling.” To be submitted to the ASCE-
ASME Journal of Uncertainty and Risk.

Abstract

Conceptual cost estimating is typically completed early in the project life-cycle when
very little design work has been completed. Because little information is known at this early
stage, conceptual estimates usually deviate substantially from actual construction costs. The
conceptual estimate is not expected to be highly accurate; however when expressed as a
deterministic value, it often leads to a false inference of accuracy by those not familiar with the
vagaries of conceptual cost estimating, making it difficult for the agency to explain cost growth
as the project proceeds through the development process. Communicating the conceptual
estimate stochastically allows the agency to produce a probability distribution of the likely
construction cost and address the level of confidence it has in the given estimate. Named
probability distributions are readily available for developing a stochastic estimate on many
commercial software’s to communicate uncertainty. However, instead of fitting available
distributions, this research generates an empirical distribution to express a range in construction
costs for individual projects. Creating empirical distributions eliminates assumptions required for
selecting an existing distribution. This paper describes the development of a stochastic data-
driven model, which combines artificial neural networks and bootstrap sampling to estimate
construction costs and their associated uncertainty at the conceptual stage. This study used 189

highway projects to train and test the estimating model.

Introduction
The difficulty with conceptual cost estimate accuracy is demonstrated in the AASHTO
Practical Guide to Cost Estimating (2013), which cites the accepted uncertainty of the early
estimate in a range of -40% to +100% from the initial cost estimate to the final construction cost.
This corresponds to a project scope definition of 1-15%, as shown in Table 1 (Chapter 1). That
AASHTO publication also acknowledges the difficulty in quantifying uncertainty associated the
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cost at the conceptual stage. It is known that many highway agencies experience substantial cost
growth from this initial estimate to the final construction cost (Flyvbjerg et al. 2002;
Schexnayder et al. 2003; Chou et al. 2006).

Reflecting the construction cost as a point estimate (i.e. a given number) does not portray
the estimator’s confidence, or lack thereof, in the estimate, nor does it indicate the potential for
cost growth. Therefore, those using the estimate in the planning and programming process may
be over confident in its accuracy. The following section discusses the bias and optimism
associated with point estimates, it then goes on to discuss the benefits of reflecting the

construction cost stochastically.

Optimism and bias associated with conceptual estimates

Bias from the estimator and the tendency to be over-optimistic in construction costs has
been found to directly attribute to construction cost growth. Bias and over-optimism was
discovered as one of the 18 primary factors contributing to construction cost escalation by Shane
et al. (2009). Over-optimism was “often viewed as the purposeful underestimation of project
costs to ensure that a project remains in the construction program” (Shane et al. 2009). In that
study interviews were conducted with over 20 public highway agencies to identify the key
factors which led to highway construction cost escalation.

There is a proven link in the literature for which an optimistic estimate of construction
cost can lead to inadequate design funds for a project and further exacerbate construction cost
growth. Typically, the design budget is established as a percentage of the initial construction cost
estimate (Jeong and Woldesenbet 2012). Therefore if the construction budget is optimistic (low),
so too is the design budget. Gransberg et al. (2007) investigated the relationship between the
design budget and cost growth from the initial estimate. The study established that, up to a point,
the greater the percentage assigned to design, the lower the cost growth measured with respect to
the conceptual estimate. It therefore follows that an optimistic design budget, assigned as the
result of an optimistic construction cost estimate, will more likely lead to cost growth from the
initial estimate due to design activities being underfunded.

In the study by Flyvbjerg et al. (2002) it was found with overwhelming statistical
significance that cost estimates presented at the pre-design stage are systematically and
intentionally misleading, and not caused by error. The study by Flyvbjerg et al., discussed in

Chapter 1, included 258 transportation infrastructure projects from different historical periods,
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geographical regions and project types. Three main reasons for the statistical significance were
investigated; this was: economic self-interest, appraisal-optimism, or misleading forecasts for
political reasons to get projects started. The conclusion of that research was that the pre-design
cost estimates were deliberately low to get projects started and hence the reason for 9 out of 10
projects experiencing cost growth.

This paper proposes the use of data-driven methods to produce stochastic estimates and
increase the level of cost transparency. Using historical project data to forecast costs and assign
contingencies removes any psychological elements or bias that may be inherent to the estimator.
Additionally, if the output is reported correctly, it should reduce any deliberate deception from
project promoters whom omit project risks and other potential costly elements in a traditional

point estimate (deterministic estimate) in order to get the project started.

Stochastic range estimating — the objective

Most highway agencies currently express their conceptual estimate as a point estimate
with a contingency assigned as a percentage of the construction cost (Molenaar 2005, Byrnes
2002, Turochy et al. 2001). Byrnes reported that DOTs add a contingency ranging from 5-45%
depending on project type and uncertainty; similar contingency factors were also reported by
Turochy et al. (2001). The problem with point estimates is that they communicate a false sense
of confidence in the cost estimate, making it difficult to assess their quality (AASHTO 2013)
and potentially leading to forecast bias by those using the estimate to make financial decisions
(Chelst and Canbolt 2012). Firstly, when the conceptual estimate is expressed as a point
estimate, it appears accurate to those with no knowledge of the limitations of the estimate itself.
Hence, there is a perceived illusion of control and predictability. Secondly those using the point
estimate in a benefit-to-cost analysis or for budgeting, fail to acknowledge the possible extreme
values or range in numbers that the final construction cost could eventually experience. Finally,
Chelst and Canbolt (2012) state that there can be tendency for an anchoring bias, where “the
forecaster becomes too anchored to the first estimate to develop a wide range that is reflective of
actual dispersion” of the costs. Chelst and Canbolt go on to state that “the preferred technique is
to initially focus on estimating both good and bad extremes.”

Providing an estimate range is often thought to show less confidence in the cost and
forethought than a point estimate. However, a probabilistic range actually requires the estimator

to draw on a wide spectrum of experiences to define a range as well as to explore its associated

www.manaraa.com



52

probabilities (Chelst and Canbolt 2012). Point estimates on the other hand simply require
specific assumptions and corresponding numbers to justify that forecast (Chelst and Canbolt
2012).

This research investigates a stochastic range estimating method to improve
communication of the conceptual cost estimate to those that are unfamiliar with its basis and
limitations. The paper’s objective is to explore a method which permits highway agencies to
utilize databases of historic project information for the following purposes:

1. To forecast the final cost at the conceptual stage and,
2. To assign a range of expected costs to help communicate the uncertainty associated with
the conceptual estimate and,
3. To compare cost estimating transparency of the point estimate to that of the stochastic
approach.
This chapter utilizes the same database developed from MDT projects and introduced in Chapter
3. The method is tested with ANN modeling, however the principles could be extended to MRA

models or projects of different scope.
Background

Holistic risk approach

There are two problems with the current technique of assigning contingency as a
percentage of the construction cost estimate. Firstly, the contingency required is not necessarily
directly proportional to the construction cost; contingency should depend on other factors such as
project type and complexity (Gransberg et al. 2011). Secondly, if the construction cost estimate
is low, then the assigned contingency will also be low, further exacerbating the cost growth of
the project. On the other hand if the construction cost estimate is high, then the contingency will
be too high, unnecessarily tying up additional fiscal year funding which might have been used to
fund additional projects.

An alternative approach to assigning contingency as a percent of the construction cost
estimate is to use a ‘bottom-up’ method by creating a project specific risk register. All possible
risks, likelihoods, and consequences are assigned a possible value and contribute to the overall
contingency fund of the project. The problem with a risk-register is that at the early stages very

little information is known about the project, making it difficult to conduct an elemental ‘bottom-
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up’ estimate of all the risks. Additionally when one conducts a ‘bottom-up’ assessment one must
still make an allowance for risks that have yet to be identified (Kaplan and Garrick 1981). Since
the conceptual estimate and its associated risk assessment, are produced at an early stage of
project development, the allowance for unknown risks would be difficult to quantify. This
‘bottom-up’ approach should be reserved for later, more confident, estimates when more
information is known about a particular project, and its risks can be better itemized.

An emerging technique, investigated in this research project, is to take a more holistic
(‘top-down’) approach to assign the contingency (Sillars and O’Connor 2007). Sillars and
O’Connor created such a cost-risk procedure for the Federal Transit Administration (FTA). This
was in response to the ‘bottom-up’ risk register method not performing well and lacking the
required variability of ranges. At the conceptual stage a ‘top-down’ holistic approach intuitively
makes sense due to the difficulty with identifying all possible risks until the design is complete.
The current state-of-the-practice, assigning contingency based on construction cost, is still a
holistic approach, but it is directly proportional to the confidence in the conceptual cost estimate.

This research aims to leverage the ‘top-down’ cost estimating approach developed in
Chapters 3 and 4 to not only calculate the construction cost, but also an associated contingency
based on the risk profile of the decisions makers. Data-driven estimating models found in the
literature generally express the result as a point estimate (Sonmez 2008). This research
investigates the use of combining ANNs with bootstrap statistical sampling to create a stochastic

range of the construction costs for highway projects.

Bootstrap sampling method

The bootstrap method provides a simple process to resample the original data-set
(Chernick 1999). Utilizing the bootstrap method to sample a database enables one to answer a
key question in data-analysis and statistics: how accurate are the results of the estimate? (Efron
and Tibshirani 1993; Davison and Hinkley 1997). Efron and Tibshirani (1993), summarized
many of the bootstrap applications discovered since the 1980s including the ability to create
empirical distributions, calculating standard errors, integration with regression analysis and
confidence intervals.

The bootstrap data-set is created by sampling the original data-set, shown in Figure 19.
There a two methods to sample the original data-set shown in Figure 19 (process A) (Efron and

Tibshirani 1993; Davison and Hinkley 1997):
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1. sampling without replacement (WOR) or,
2. sampling with replacement (WR).

Bootstrap
(a) sam;;/i%} data-set \(b) modeling
Original data Predicted

set of projects construction
cost (output)

N e

Iterations i’

Figure 19. Bootstrap process (developed from Efron and Tibshirani (1993)

Extracting a nominated percentage of projects from the original data-set is sampling
without replacement (WOR). In this process ‘n’ is defined as the size of the bootstrap sample and
‘N’ is the number of data points in the original data-set. The bootstrap data-set cannot exceed the
size of the original data-set (N>n). Additionally, every project in the original data-set can only
occur once in the bootstrap data-set. The sample fraction is simply defined by f=n/N (Efron and
Tibshirani 1993; Davison and Hinkley 1997).

The second method to sample the projects is with replacement (WR). Once a project has
been included in the bootstrap data-set then it is returned to the original data-set of projects to
enable it to be selected again (Sonmez 2011; Efron and Tibshirani 1993; Davison and Hinkley
1997). Sampling WR means that some data in the bootstrap set can appear zero times, some
appear once, some appear twice or more (Sonmez 2008).

Davison and Hinkley (1997) argue that sampling WOR is the simplest method, Efron and
Tibshirani (1993) argue the opposite. Provided that the bootstrap sample is much smaller than
the population size then the probability of sample repetitions will be small anyway (Efron and
Tibshirani 1993). This research tests sampling WOR method, this is because the bootstrap
method is being used to create confidence intervals and not as a method to deal with lack of data

used in other studies (Tsai and Li 2008).
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Once the bootstrap sample of projects is created, the construction cost (output) can be
calculated by modeling (process B). Two methods presented above were ANN or MRA to
predict the construction cost. Because ANN and MRA are data-driven estimating techniques then
the output will vary with the input of projects. Therefore, a range estimate can be created if there
is methodical control of the data-set (inputs) going into the data-model to get accordingly varied
construction cost (outputs).

The final step is to iterate, as shown in Figure 19. Iterating the bootstrap sampling
process many times allows one to obtain multiple construction cost outputs with different costs.
A probability distribution function of the construction costs (outputs) can be created either in a
discrete method (probability mass function) or by converting the discrete outcomes to a
continuous function (probability density function). The probability distribution function is
commonly called a stochastic estimate because the expected construction costs have probabilities
associated with them (Bedford and Cooke 2001).

Tsai and Li (2008) used the bootstrap method combined with an ANN to estimate the
cost of manufacturing ceramic powder. Their study specifically pursued this technique to address
the small training data-set that they had by creating virtual samples. Tsai and Li’s study found
that using the bootstrap method to create virtual samples actually reduced the ANN error and
made the predictions more stable. They argued a benefit of bootstrap sampling combined with
ANN modeling was the improvement in accuracy when little data was available through the use
of virtual samples. Instead of stabilizing a small data-set, this chapter makes use of the bootstrap

approach to create a stochastic cost estimate, the details of which are covered in the next section.

Stochastic estimating — previous studies

Kaplan and Garrick (1981) recognized the benefits of a probabilistic curve when
quantifying risk by stating that “a single number is not a big enough concept to communicate the
idea of risk. It takes a whole [risk] curve.” The benefit of stochastic estimating has been explored
by various authors since then, but few in the field of highway construction cost estimating.
FHWA, in their cost estimating guidance (2007), allow highway agencies to express their
conceptual estimates as a range with indicated levels of confidence, thus it is logical to draw
increased attention of the ability of highway agencies to communicate their conceptual estimates

through a range.
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In 2005 Molenaar created a stochastic cost estimating method for Washington State
Department of Transportation (WSDOT) specifically for projects greater than $100M in cost.
WSDOT are now successfully implementing this practice. Molenaar concluded that the
“stochastic method better conveyed the uncertain nature of project costs at the conceptual phase
of project development.” The stochastic method was trialed on ‘Highway Megaprojects’ and
although the method was effective, the cost of the process was in the order of $3M for WSDOT
due to workshops, development costs and feedback sessions. Molenaar’s research concluded that
the benefit was better management of public funds and possible gains in public confidence
through transparent communication. That research solely concentrated on megaprojects and if
highway agencies are to adopt this method then they need to employ a risk-analyst expert. The
research reported below instead focuses on typical projects for highway agencies and should not
require the employment of a specialist to manage.

Sonmez (2008) used bootstrap sampling with replacement to calculate a probabilistic
conceptual cost estimate of a building. The number of projects used to train the regression model
was 19. The technique was deemed valid when the one building project, with which the model
was validated with, was enclosed within the 90% probability level. A total of 1000 iterations
were completed where the construction cost of the test project was calculated in each iteration
with a bootstrap data-set of 20 projects. Each of the 19 projects available to make the bootstrap
sample was included either nil, once, twice or many times to fill the 20 training spots, thus
sampling WR was used. Sonmez stated that further studies should include larger data-sets, this
chapter contributes to the limitation outlined by Sonmez through the use of 189 projects in the
database as opposed to 20.

In other fields, researchers used the bootstrap procedure to represent uncertainty for
incremental cost-effectiveness ratios for endoscopy clinical procedure (Lord and Asante 1999).
The authors stated that health economists have a “responsibility to present estimates of the
degree of uncertainty surrounding the results of economic evaluations.” They indicated that
decision-makers place too much reliance on point estimate results presented. This
communication issue and perceived confidence is therefore not only experienced in the
construction industry.

Other techniques to produce a stochastic estimate, without the use of bootstrap sampling,

do exist. Monte-Carlo simulation can be used simulate outcomes to produce probability in a
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commercial spreadsheet. In 2004 Sonmez used this approach to create a range estimate using
normal distribution. However, in that research Sonmez did outline the inherent assumptions
regarding the distributions and expected errors. This conclusion further supports the use of
bootstrap to create an empirical distribution as it “enjoys the advantage of not relying on

assumptions or calculations of the original distributions” (Dupret and Koda 2000).

Methodology
To compare the cost estimating effectiveness of a stochastic estimate with a point
estimate then both methods of estimating the construction costs were completed. The
methodology differences for the two different models are shown in Table 9. The ANN model for
the point estimate was that developed in Chapter 4. No adjustment to the model architecture,
input attributes or modeling software were made between the models; the only exception being

the projects that were used to train the ANN.

Table 9. Model details for point estimate and stochastic estimate

Point Estimate Stochastic Estimate
Number of projects in testing | 38 38
database
Number of projects in 151 121
training database
Number of iterations 1 100
Output Point estimate Confidence interval
Validation MAPE Actual CN within confidence
interval

The three main steps taken to create the point estimate and stochastic estimate output are
detailed:

1. ANN data-driven model from Chapter 4 used predict construction cost as a point estimate
for 38 test projects. All 151 projects were used to train the ANN as shown in Table 9.

2. Bootstrap samples of 121 projects were used to train the ANN model instead of the entire
data-set. A total of 100 iterations were completed (i.e. 100 point estimates) with
randomly selected bootstrap samples. The construction cost of the same 38 projects was
predicted on each iteration. The combination of all construction costs formed the

stochastic estimate and this was converted into a confidence interval.
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3. The output of the point estimate and stochastic estimates were compared.

A point estimate provides a single number and a stochastic estimate provides a range of
numbers. The difference in the form of the estimate output makes comparison difficult. As such
our research team validated the two models differently, this is shown in Table 9. The ability to
communicate the cost estimate confidence was compared between the point estimate and that of
the range estimate. For both estimating methods the performance of the estimating tool was
measured against the actual construction cost, this is the validation technique in Table 9.
Comparison with the actual CN cost to the point estimate was calculated using the MAPE
(Equation 1, Chapter 2). The performance of the range estimate could not be measured using the
MAPE as the output was a range of numbers. Instead, for validation of the stochastic estimate the
actual construction cost was compared to the range estimate to see if it was enclosed within the

maximum and minimum extreme values.

Data Analysis and Results
The results section is divided into two parts. The ANN model outlining the results from
developing a data-driven point estimate (Results I). In the second part the point estimate is

further developed into a stochastic estimating model (Results II).

Results I: point estimating model

The point estimate was calculated using all 151 projects to train the model and the same
input parameters as presented in Chapter 4. The same 38 projects were used to test the model and
calculate the MAPE, the error from each of the individual 38 projects is shown in Table 10. The
MAPE of all test projects was calculated through Equation 1, this was 23% and shown in Table
10, well within the recommended performance in the AASHTO Practical Guide to Cost
Estimating (2013) at the conceptual stage.

It could be perceived by a project promoter that given a point estimate, the construction
cost should be enclosed by a range within 23% of that number. But this is not correct. The
MAPE was calculated based on the average error from the actual construction cost. If one
enclosed a range +/-23% from the actual construction costs only 24 out of the 38 estimates would
fall within this range, as shown in Table 10. Thus this finding shows that the MAPE does not
reflect the confidence of each individual project, our model much more confidently predicts the

construction costs of some projects when compared to others. The empirical method produced in
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the following section creates individual contingencies for each project based on the confidence in

that project and associated data.

Table 10. Point estimate versus actual construction cost

Unique project PredicFed point Actual construction e %g%oszinv;isﬂgfl} t:l—/e-
number estimate cost predicted
7907 $ 2,190,506 $ 2,049,786 7% Yes
7655 $ 687,360 $ 618,878 11% Yes
7648 $ 1,610,835 $ 1,577,284 2% Yes
7629 $ 935,281 $ 1,416,928 34% No
7622 $ 2,931,223 $ 2,735,769 7% Yes
7616 $ 2,714,477 $ 2,341,870 16% Yes
7613 $ 274,872 $ 346,417 21% Yes
7611 $ 815,565 $ 1,228,248 34% No
7610 $ 788,482 $ 668,753 18% Yes
7608 $ 478,445 $ 655,898 27% No
7601 $ 2,494,663 $ 2,153,096 16% Yes
7471 $ 419,294 $ 845,535 50% No
7462 $ 577,875 $ 706,344 18% Yes
7444 $ 1,956,166 $ 1,904,516 3% Yes
7405 $ 136,058 $ 121,409 12% Yes
7306 $ 191,456 $ 413,068 54% No
7108 $ 469,082 $ 1,173,722 60% No
6988 $ 121,798 $ 85,237 43% No
6974 $ 2,732,350 $ 3,380,123 19% Yes
6959 $ 535,376 $ 508,032 5% Yes
6952 $ 1,567,018 $ 1,963,090 20% Yes
6948 $ 324,069 $ 337,096 4% Yes
6944 $ 865,742 $ 960,662 10% Yes
6942 $ 655,190 $ 541,157 21% Yes
6927 $ 1,431,002 $ 1,300,320 10% Yes
6894 $ 2,080,816 $ 1,469,483 42% No
6811 $ 336,661 $ 296,926 13% Yes
6799 $ 211,790 $ 182,946 16% Yes
6795 $ 354,359 $ 351,910 1% Yes
6523 $ 463,207 $ 578,304 20% Yes
6503 $ 218,961 $ 255,169 14% Yes
6501 $ 1,340,614 $ 1,044,308 28% No
6499 $ 597,541 $ 772,972 23% No
6266 $ 570,293 $ 327,928 74% No
6253 $ 440,025 $ 656,403 33% No
6237 $ 344,405 $ 285,501 21% Yes
5752 $ 2,218,890 $ 1,701,527 30% No
5751 $ 1,717,133 $ 2,663,697 36% No
MAPE (calculated through Equation 1, Chapter 3): 22.9%
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Results I1: stochastic estimating model

Table 11. Range estimate results for 38 test projects

Project Minimum Value Probability Level R GOt
Number Predicted 0 15% o) 95% > Value Construction
redicted Cost
7907 $824,741 $1,406,550 $1,728,648 $2,825,781 $2,870,946 $3,581,856 $2,049,786
7655 $430,625 $467,737 $572,985 $694,898 $696,662 $717,304 $618,878
7648 $542,000 $999,585 $1,199,560 $2,094,691 $2,412,435 $3,556,034 $1,577,284
7629 $895,547 $922,928 $923,321 $1,126,959 $1,221,602 $1,529,054 $1,416,928
7622 $1,133,263 $1,546,317 $1,568,898 $3,031,642 $3,032,167 $3,032,169 $2,735,769
7616 $1,153,138 $1,174,832 $1,628,757 $2,714,176 $2,715,070 $2,737,307 $2,341,870
7613 $161,313 $194,891 $229,911 $301,865 $329,689 $384,002 $346,417
7611 $474,971 $483,203 $529,673 $1,032,264 $1,246,094 $1,456,776 $1,228,248
7610 $235,422 $488,716 $584,155 $753,068 $801,898 $1,248,959 $668,753
7608 $330,430 $355,491 $420,568 $518,382 $543,090 $630,549 $655,898
7601 $1,440,817 $1,440,837 $2,492,953 $3,431,572 $3,431,577 $4,038,078 $2,153,096
7471 $316,712 $355,137 $366,945 $558,984 $1,002,218 $2,511,961 $845,535
7462 $344,431 $480,753 $548,546 $668,353 $759,549 $1,204,432 $706,344
7444 $1,173,390 $1,232,745 $1,580,326 $2,735,104 $3,536,238 $4,051,083 $1,904,516
7405 $89,920 $104,680 $121,730 $164,815 $185,335 $310,316 $121,409
7306 $144,090 $160,617 $167,621 $234,521 $281,810 $2,283,585 $413,068
7108 $145,940 $372,513 $472,067 $627,791 $666,937 $2,271,069 $1,173,722
6988 $97,859 $104,047 $111,191 $148,464 $162,408 $402,573 $85,237
6974 $1,550,002 $1,773,396 $1,844,132 $3,065,984 $3,621,122 $3,891,009 $3,380,123
6959 $233,175 $308,543 $405,207 $545,208 $554,351 $570,260 $508,032
6952 $527,431 $603,247 $1,001,401 $2,048,786 $2,319,392 $2,657,287 $1,963,090
6948 $248,460 $270,439 $288,816 $391,078 $444,432 $1,077,672 $337,096
6944 $299,942 $466,895 $524,385 $1,254,101 $1,323,058 $2,891,232 $960,662
6942 $263,154 $377,331 $502,391 $692,654 $736,706 $766,056 $541,157
6927 $826,662 $913,651 $1,128,157 $1,529,055 $1,529,055 $3,150,506 $1,300,320
6894 $680,576 $749,276 $1,197,166 $2,304,526 $2,959,622 $3,327,156 $1,469,483
6811 $299,087 $313,086 $338,888 $605,708 $674,011 $1,238,211 $296,926
6799 $154,221 $158,102 $169,601 $214,793 $229,768 $296,274 $182,946
6795 $241,073 $287,675 $359,852 $545,451 $596,202 $857,057 $351,910
6523 $256,790 $362,354 $410,310 $522,215 $551,703 $605,589 $578,304
6503 $147,859 $169,334 $186,775 $245,650 $528,303 $1,006,085 $255,169
6501 $558,065 $896,055 $906,936 $1,342,951 $1,476,607 $1,529,052 $1,044,308
6499 $387,612 $439,490 $453,757 $615,456 $650,599 $1,382,243 $772,972
6266 $200,185 $315,382 $400,045 $661,697 $665,759 $1,173,788 $327,928
6253 $143,152 $199,808 $291,538 $556,654 $628,034 $1,359,631 $656,403
6237 $183,489 $198,812 $268,941 $385,624 $439,155 $558,939 $285,501
5752 $1,000,091 $1,255,209 $1,543,764 $4,249,406 $5,036,280 $5,275,446 $1,701,527
5751 $971,781 $1,261,650 $1,541,001 $2,203,069 $2,502,674 $4,257,199 $2,663,697

Range estimate results for all 38 test projects are shown in Table 11. The minimum and

maximum values were the two extremes predicted during the 100 iterations in bootstrap samples.
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The empirical probability levels 5%, 15%, 85% and 95% indicate probabilities that project costs
will be below that value. The 90% confidence range of estimated construction cost is the range
between the 95% and 5% probability levels, similar confidence levels can be obtained also by
subtracting the high and low probability levels to calculate the confidence range. There are some
interesting outcomes shown in Table 11:

e 35 of the 38 test projects fall within the minimum and maximum expected extremes

predicted throughout the 100 bootstrap samples.

e 27 of the 38 test projects fall within the 5% and 95% expected cost.

e 18 of the 38 test projects fall within the 15% and 85% expected cost.
From these results it is apparent that as the confidence range is narrowed then more projects fall
outside of the range. Thus to best represent the uncertainty then one should quote both the
maximum and the minimum values.

Figure 20 displays the stochastic estimate for four selected projects. Project 6799 is a
chip-seal project only and is known to a very high degree of certainty. This is shown in Figure 20
by the narrow range of expected construction costs. Projects 6952 and 7907 were mill and fill
projects with length 6.2 and 7.5 miles respectively and the final surface was chip-seal surface.
Due to the similar characteristics they are parallel with project 7907 slightly higher in predicted
and actual costs due to the slightly longer length.

Project 5752 displays the least certainty and this is displayed visually with the widest
range in expected construction cost. The stochastic ANN model has predicted a drastically
different range for this project compared to both projects 6952 and 7907, this is despite
reasonably similar actual construction costs for all three of three projects (5752, 6952 and 7907).
Project 5752 was 8 miles in length, included asphaltic levelling, asphaltic isolation lift, asphaltic
resurfacing lift followed by a chip-seal surface. The complexities and unknowns were all high
with the other major difference being inclusion of bridge work. The modelling process has
recognized the many high complexities and unknowns when calculating the cost of project 5752

and therefore produced a huge range in construction costs.
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Figure 20. Visual representation of estimate confidence for four projects

The actual construction costs for each project, shown in Figure 20, fall within the
confidence intervals for their respective ranges predicted with the model. The four plots in
Figure 20 lead one to conclude that the distribution of expected construction costs are not
constant. If one were to assign a distribution, then the assumptions of that named distribution
would not work on all projects, this further highlights the benefits of the empirical process

presented in this paper.

Discussion

A limitation of ANN results is that it is essentially a ‘blackbox’ where one cannot easily
decipher the reason for cost variation. The literature confirms that this is a common downside to
ANNSs (Kim et al. 2004; Hegazy and Ayed 1998). The project costs are estimated based on
pattern recognition, and perhaps the pattern recognition, or lack thereof, is providing the
confidence intervals. When more data is added to the ANN then one may become more confident
in the range of possible project costs.

In developing a stochastic and point estimating model with the same set of data it has
become apparent that:

e The point estimate results provide no rational means to assign an individual contingency
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for each project based on the result. Thus the point estimate provides no improvement to

the current state-of-the-practice for assigning contingency.

e Producing a stochastic estimate visually aided the comparison of expected construction
costs for various projects.

e Given the large variations in the empirical distributions then it is apparent that a single set
distribution could not easily be added to each project to assess the confidence levels.

This research presented here is an example of how a highway agency could embrace this
estimating principle for cost transparency, utilization of existing databases and to express the
actual confidence in each estimate. Changing the culture of project estimating from point
estimates to estimating ranges will require a major attitude shift. , “It is more challenging to
determine the investment in the presence of significant uncertainty [as opposed to point
estimates] as to the project’s return on investment. It requires a corporate culture and leadership
that can tolerate and even embrace this ambiguity” (Chelst and Canbolat 2012).

The commercial software used to train and test the artificial neural network was not
compatible to bootstrap sampling, as such the iterations were completed manually and it was
time consuming limiting the iterations to 100. More iterations or a larger data-set should better
enclose the actual costs around the extremes, although 35/38 is 92% of the time correct. Further
studies could extend the data-sets, conduct more iterations and investigate the sampling fraction

used (80%) along with trialing sampling WOR compared to WR.

Conclusion

Point estimates are simply one number with no indication of the level of confidence
behind that number. In later estimating stages, quantities are known, and highway agencies can
be more confident and can express the estimate in that form. For the earlier estimate stages,
where confidence is lower, the estimate should be expressed in a manner that describes the
estimator’s confidence and providing a range does just that. This research has shown the power
that developing an empirical distribution has for expressing the point estimate as a distribution of
likely costs. This research found that not all projects have the same level of confidence, as such
individual contingencies require a rational basis for their amount rather than a fixed percentage

of construction costs.

www.manaraa.com



64

CHAPTER 7. CONCLUSIONS AND LIMITATIONS

Conclusions

This section presents the main findings from each of the three research papers in Chapters
4,5 and 6. Chapter 4 presented a method to rationally sample data that could be used for data-
driven techniques such as artificial neural networks or multiple-regression analysis:

e Firstly, when all available 151 data points were used to train the model, the error in
testing the model on the remaining 38 projects was the lowest. This finding aligns with
literature suggestions where more data for testing and training the model will increase
accuracy and the reliability of that model.

e  When less than 151 data points were used to train the model, the error in testing the
remaining 38 projects was least when the distribution of key input attributes were
reflected in the sample of data.

Findings from Chapter 4 were used to rationally select the 38 projects to test the model against.
This MAPE reported of 22.9% is therefore reflective of the error for future project predictions.
The same 38 projects were used to test the model in Chapters 5 and 6.

Chapter 5 focused on quantifying the efforts to conduct the conceptual development stage
estimate. The effort collected was perceptive through a survey at a highway agency. The major
findings of Chapter 5 were:

e Selecting input variables that have a high influence on the construction cost but require a
low level of effort to calculate or identify was proven to be a rational selection method.

e The case-study showed that once 6-8 variables were added to the model then further
detail yielded no reduction in the estimating error.

e Highway agencies do not need to store and collect more input variables than required. In
doing so only increases the demand on data storage and efforts to collect the data with
little to no increase in performance.

Chapter 5 proved for the first time that not all project attributes need to be known to calculate the
construction cost at the conceptual stage to reasonable accuracy. This result is positive for
practitioners wanting to implement data-driven techniques.

Chapter 6 leveraged the artificial neural network created in Chapters 3 and 4 by
combining the method with bootstrap sampling. The purpose of this was to express the

conceptual estimate as range as opposed to a point estimate. Point estimates can result in
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overconfidence and not communicate the lack of uncertainty associated with the conceptual cost
estimate.

e Bootstrap sampling combined with artificial neural networks were proven as a suitable
method to produce a range estimate for highway projects.

e The range estimates better communicated the expected construction costs at the
conceptual stage as opposed to a point estimate. There was an improved ability for the
cost estimate to have a contingency assigned not simply based as a percentage of the
construction cost.

e The empirical distribution produced confidence intervals for all 38 test projects. Because
the distribution was empirical and specific to each project then no assumptions were

necessary, typically required when fitting a named distribution.

Limitations

The limitations in Chapter 4 start with the content analysis completed. There may be
other relevant literature in the field of early estimation for construction projects which were not
considered in the content analysis of this chapter. The results of this section are therefore limited
to the 16 publications investigated. Chapter 4 then makes use of the database developed in
Chapter 3. The results from the ANN cannot be generalized to include all highway projects. The
same database was utilized throughout Chapters 5 and 6 and therefore these all have this same
limitation.

In Chapter 5 the content analysis from Chapter 4 was extended, thus very similar
limitations exist. Additional to the content analysis, perceptive data for estimating effort and
influence of the input variables was collected through a survey in Chapter 5. This survey was
conducted at MDT and completed by 31 employees suitably qualified to do so. The results of
this survey cannot be extended beyond data from this agency. The results of Chapter 5 are
therefore only relevant to the data collected for that agency.

Chapter 6 leverages the data-driven ANN model created in Chapters 3 and 4. Bootstrap
sampling was combined with ANN. The ability to communicate the estimate as a range was only

demonstrated through 38 test projects and as such the results are limited to that data.
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CHAPTER 8. CONTRIBUTIONS AND RECCOMENDATIONS
FOR FUTURE RESEARCH

Contributions

The major contribution of this research was that for the first time it was proven that at the
conceptual estimating stage once enough information is known then adding further detail does
not enhance the estimate accuracy. This is significant for practitioners willing to trial data-driven
CCE techniques. Practitioners can instead concentrate on creating an accurate database with
those variables that have a high impact on construction cost and do not require a high-level of
effort. The specific contributions are outlined for each chapter below.

Chapter 4 for the first time identified that some previously published literature on data-
driven CCE models are reporting models with such low prediction error capabilities, yet are
powered by databases with very few projects. This was not in line with literature reports that
larger databases increased the accuracy and reliability of estimating models. Furthermore, it was
identified that no literature had reported their method to select the data for their models in a
rational way. As such, this research introduced a method that could be used if an entire database
were not to be used for estimate modelling. It also contributed to the body of knowledge further
proving the statement that ‘larger databases increase the reliability and accuracy of a model’, this
later point being contrary to the content analysis of select publications.

Chapter 5 attempted to quantify the level of effort required to conduct the conceptual
estimate, previously this has never been attempted in the field of construction cost estimating. A
new objectives hierarchy tree was proposed at the CCE stage, that being creating a model to
predict with reasonable accuracy but require a low level of effort. Previous research has only
focused on reducing the estimating error. To address this, a methodology to select input variables
which meet the dual-objective framework was proposed. The paper’s primary contribution was
significant for both researchers and practitioners — for the first time it was proven that while
increasing the number of input variables in an early estimate may appear to enhance estimate
accuracy on an intuitive basis, this is not necessarily true. Once around 6 to 8 high impact/low
effort variables were included in both the MRA or ANN models then further input variables
yielded diminishing returns in the estimate error.

Finally, Chapter 6 compared stochastic cost estimating to the point estimate which is the

typical format at the conceptual stage. The benefits of bootstrap sampling combined with
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artificial neural networks was displayed with data from a highway agency for the first time. The
ability for the stochastic estimate to reflect the true confidence in the estimate at the conceptual
stage was displayed. Much literature has produced data-driven models that construction
practitioners could use to calculate a point estimate at the conceptual stage, instead Chapter 6
challenges the overconfidence associated with a point estimate. Specifically, the challenge is laid
for highway agencies to not assign contingency based on a fixed percentage of the construction

cost. Data-driven methods such as proposed in this chapter display the ability for this to occur.

Recommendations for Future Research
The ability for data-driven techniques, such as ANN and MRA, to calculate the
conceptual cost of projects has been proven in the literature but has not yet been implemented by
highway agencies. This thesis contributes to methods and improvements in order for that to
occur. Further research in this area could continue as follows:

e All techniques and methods could be proven with larger databases for increased
reliability. Additionally the methods could be extended beyond the scope of works
displayed in this research.

e The stochastic results produced in Chapter 6 was completed manually for 100 iterations
due to the incompatibility of the software’s. Future research would conduct more than
100 iterations of the stochastic estimating method by creating a software or method to
combine the ANN modeling with bootstrap sampling.

e It is known that the commercial software selected to conduct the ANN or MRA modeling
will affect the output. As part of this research only one commercial software was tested.
Future research would test the methodologies and practices on alternative software to
validate results or investigate better performance.

e A method to predict the likelihood of construction growth from the initial estimate
(CGIE) would benefit the estimate at the conceptual stage. It has become apparent that
the confidence in estimating the construction costs at the initial stage is hugely variant for
each project. A data-driven method could be investigated to recognize patterns between
CGIE and the types of projects which produce higher variations. This could be used in
combination with the point estimate to produce a cost estimate with associated

contingency or a confidence rating index. Alternatively, it could be correlated with the
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estimate ranges produced in Chapter 6 as further validation of the range estimates
produced for construction cost estimate for each of the 38 test projects.

In this thesis there was a larger focus on the use of ANN and only one chapter produced
results using MRA. In that chapter an assumption of linearity was made to produce the
predictions. An emerging method called Multivariate Adaptive Regression Splines
(MARS) is being trialed in other fields with success. The prediction model produces a
series of “piecewise” linear relationships (Haleem et al. 2013). Further research could
extend this into the field of highway construction cost estimating.

The database was created with an assumed inflation rate applied to all construction costs.
This rate of 3% was based on experience from the highway agency that provided the data,
MDT. Of the publications studied in this research there was silence on the method or
inflation rate applied to their construction costs. Further research could investigate a
method to predict the inflation rate, as opposed to using historical averages, for best
prediction results.

Much literature studied on artificial neural networks select the input variables based on
expert opinion and trial and error. In this research a method was proposed to select the
variables based on the perceptive level of effort and influence on the construction cost.
Future research could investigate decision analysis methods, for example multi-attribute

utility theory (MAUT), to select the best input variables for their models.
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APPENDIX A. INPUT VARIABLES

1111111

ber for deck efrom 0t09bridge deck

11{Intersection signalization and signage Y marking complexity

Signage and pavement

Year 2009: 47; Year 2010: 50; Year 2011.
Y  [Letquarterand year ear2012: 39; Year 2013: 21

/// /// /// /// /// /// /// /// )
v i PFR
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APPENDIX B. COMPLEXITY RATING CHART

Terrain/Topography Flat Rolling Mountainous

Generally flat, fairly flat | Flat and rolling or gently rolling Gorges, steep terrain etc

etc

Low Medium High
Geotechnical No digouts or other Roadway projects will require minor digouts Extensive sections of roadway digouts
Involvement geotech Additional spot mill/fill in projects not receiving >3 spot mill/fill over and above the mainline

any mill (<3 intersections or bridge approaches or
thick bridge mill in chipseal or overlay project)

works
Relevel bridge approach slabs
Multiple of the medium type works

Traffic signs and
pavement markings

Standard pavement-
marking replacement
only (required on all
projects)

Or “traffic to assess
reflectivity and upgrades
required”

Standard pavement-marking replacement with any
of the following two:
- Replace or upgrade signs
- Changes to pavement markings
required/ TWTL markings/lane changes
- Significant pavement marking upgrades in
urban area
- Some sections of rumble-strip
- Minor and singular safety sign: Weigh-In-
Motion advance sign etc... intersection
advance signs
Or none of the above but rumble strips on the entire
project.

As with medium rating plus any:

- Flashing signs or traffic lights

- Overhead signs

- Lighting

- Substantial upgrades to rumble-
strips and any of the other medium
works

Railroad Involvement

Low likelihood of
requiring agreement
>50ft from railroad

Possibly flagmen at times
Project areas within 50ft of railroad and railway
insurance required

Flagmen at times

MRL agreement

R/W acquisition and/or utility involvement
with railroad

Utility Complexity

No utility involvement

Medium rating for any of the geotechnical,
ADA/sidewalk or guardrail to reflect the possible
utility identification or relocation

No major utility relocations

And/or Mill/Fill in urban area requiring ironwork to
be raised and protected

High rating for any of geotechnical,
ADA/sidewalk or guardrail

or

Significant utility disturbance is known

Environmental issues

Categorical Exclusion

Categorical Exclusion or Environmental
Assessment

Environment Impact Study or complex
Environmental Assessment required
Studies of multiple alternatives

www.manaraa.com
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Minimum interaction
with environmental and
permitting agencies
Minor environmental
impacts

Do not involve cultural
resources, hazardous
waste, Section 4(f)
evaluations or
substantial flood plain
encroachments

Cultural Resources (historical, archaeological etc),
SHPO

Wetland mitigation, 124 notification, 404 permit
required

Parkland involvement, hazardous waste, floodplain
encroachments

Water and air pollution mitigation

Major coordination with Game or Fish and Boat
commissions

Endangered species

Migratory Birds

Cores required to test if AC is contaminated with
asbestos

Continued public and elected officials
involvement in analyzing and selecting
alternates

Other agencies (such as FHWA, COE, EPA,
Fish, Wildlifte & Parks, DEQ, etc) are
heavily involved to protect air; water; game;
fish, threatened and endangered species;
cultural resources (historical, archaeological,
parks, wetlands, etc) etc

Tribal involvement with resources

Guardrail (on bridge or
highway)

No guardrail work

Either:
- 1 rail upgrade or a few (1-3) bridges
requiring end terminus upgrades
- Awaiting recommendations from safety
- Guardrail extensions on 1-bridge
- QGuardrail repairs
- Minor guardrail replacement

Significant upgrades possibly involving:

- >3 end terminus on guardrails

- Guardrail extensions

- Concrete bridge rails

- Raising heights on >1 bridges or
other guradrails

- Entirely new guardrail installation

- >1 rail upgrades

ADA and sidewalk

None

1 ADA intersection upgrade and/or minor sidewalk
involvement or traffic furniture
Detectable warning signs being added

More than 1 ADA upgrade and/or extensive
sidewalk upgrades
Curbing or traffic furniture upgrades.
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APPENDIX C. SURVEY AND RESULTS

IOWA STATE UNIVERSITY o R s

. R we e Ulhee T Hespronsibile Bescrch
DF SCIENCE AND TECHNOLOG Y Ve Fressdems for Roscarch

1138 Pearsan Vlall
Anees, fnwa ginen1-2007
315 g4 500

FAX 515 2144307

Date: TIN5
To: Dr. Douglas Gransherg CC: Brendon Gardner
384 Town Engineering 3801 Lincaln Way, #211
From: Office for Responsible Research
Tithe: MOT Cost Estimate Survey
IRE ID: 15-367

Study Review Date: 7/10:2015

The project referenced above has been declared exempt from the requirements of the human subject protections regulations as
described in 45 CFR 46.101(b) because it meets the following federal requirements for exemption:

+ {2) Research involving the use of educational tesis (cognitive, diagnostic, aptitude, achievernant), survey or inferview
procedures with adults or cbservation of public behavior where
= Information obtained is recorded in such a manner that human subjects cannot be identified directly or through
idantifiars Bnked to the subjects; or
+ Any disclosure of the human subjects’ responses outside the ressarch could not reasonably place the subject at risk
of efminal or civil llabfity or be damaging to their financial standing, employability, or reputafion,

The determination of exemption means that:
. You do not need to submit an application for annual continuing review.

' You must carry out the research as described in the IRE application. Review by IRE staff is required prior to
implermanting modifications that may change the exermpt status of the research. In general, review is required for any
redifications lo the research procedures (2.9, method of data collection, nature or scope of informalion o be collected,
changes in confidentiality measures, elc.), modifications that result in the inclusion of participants from vulnerable
populations, andlor any change that may increase the risk or discomfort fo participants. Changes to key personnel must
also be approved. The purpose of review is to determine if he project stll meets the federal criteria for exemption,

Non-gxempt research is subject to many regulatory requirements that must be addressed prior to implementation of the
study. Conducting non-exempt research without IRB review and approval may constilute non-compliance with federal
regulations and/or acedemic misconduct according to 15U policy.

Detailed information about requirements for submission of modifications can be found on the Exempt Study
Modification Form. A Personnel Change Fosm may be submitied when the anly modification involves changes in study
staff. If it is determined that exemption is no longer warranted, then an Application for Approval of Research Invalving
Humans Farm will need io be submitted and approved before proceeding with data colaction.

Plaasa nole thal you must submit all research invelving human participants for review. Only the IRB or designees may make the
determination of exemption, even if you conduct a study in the fulure that is exactly B this study.

Plaase be aware thal approval from other entities may also be needed. For example, accass 1o data from private records (e.g.
gludent, medical, or employment records, eie.) that are protecied by FERPA, HIPAA, or ather confidentiality policies requires
permission from the holders of those records. Similardy, for research conducted In institutions other than ISU (e.g., schoals, other
colleges or universities, medical faciftizs, companies, ete.), investigators must oblain permission from the institutionis) as required
by their policies. An IRE determination of exemption In no way implies or guarantees that permission from these other
entithes will be granted.

Plagss don't hesitata to contact us if you have questions or cancams at 515-204-4566 or IRB@iastate.edu,
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IRB #: 15-136 Exemption Approval
IOWA STATE UNIVERSITY

Review Date: 7/10/2015 el Inituta for Transpartation

Confused by the questions? - feel free to contact
Brendon Gardner bgardnen@iastate.edu (515) 708 011:
Jeania Cereck jcereck@mt.gov (406) 454 589

Christie McOmber ccomber@mt.gov (406) 454 5901

Default Question Block

MDT Cost Estimate Survey

This guestionnaire is part of the Topdown Early Cost Estimating Project’ being conducted
by lowa State University and funded by MDT. This questionnaire has been carefully
developed alongside MDT personnel to better understand the preconstruction cost
estimating at MDT, in-particular what influences the costs.

Motivation:

(Goal 1): To further understand the details which MDT typically understand or can
approximate during preconstruction stages.

(Goal 2): As part of our research we want to gauge a perceived ‘level of effort’ during
estimating stages. This is to evaluate if diminishing returns are reached in our neural
network model.

Sieps:
« Please answer the questions based on your own experience
Select the most applicable answer and complete all questions
For information typically provided from another Bureau then please answer the

question based on your experience
« Intended survey time: approximately 20 mins

-

Thank-you in advance for completing the survey!

Contact Details

________________________________________________________________|]
Name

Email
Job Title

Bureau/Division
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1) When do you typically compute or identify this variable in the 5 preconstruction stages?

= Final
Momination PFR ALG of FIH Dl
ns
Work

Urban or rural project
Construction on MNative American Reservations

Context sensitive design issues, controversy - level of
environmental documentation

DCiesign AADT
Design speed(s)

Site topography (steep, flat or undulating terrain)
Start and end stations, length and width

Existing surface conditions and depths

Mumber of intersections in project

Mumber of bridges reguiring work/reconstruction
Intersection signalization and signage

Letting date

Harizonital and vertical alignment

Extent of changes to the existing intersections
Typical section (depths of surfacing and aggregate]
Curb & Gutter and Sidewalk

Bridge type (steel or concrete) and complexity
Wolumes of excavation and embankment
Geotachnical - subsurface & slope recommendations
Bridge deck ares

Traffic Cantrol - closures or detours

Environmental permitting reguirements - wetlands
Hydraulic recommendations and cubverts

Storm Sewer extents

Bridoe span lengths (between supports)
Foundation complexity of the bridge
Right-of-way acquisition and costs

Extent of utlity relocations and costs
Contract time
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2) Rate the typical effort required to compute or identify each variable:

L=Low -
effort, )
infomation Mgd;:m
available, and

desktop
study effart

H = High effort
invohved. Possibly
site visits, site
investigations and
spproximations

Urban or rural project
Caonstruction on Native American Reservations

Context sensitive design issues, controversy - level of
environmental documentation

Ciesign AADT
Design speed(s)

Site topography (steep, flat or undulating terrain)
Start and end stations, length and width

Existing surface conditions and depths

Mumber of intersections in project

Mumber of bridges reguiring work/reconstruction
Intersaction signalization and signage

Letting date

Horizontal and vertical alignment

Extent of changes to the existing intersections

Typical section (depths of surfacing and aggregate)
Curbs & Gutter and Sidewalk:

Bridge type (steel or concrete) and complexity
Wolumes of excavation and embankment
Geotachnical - subsurface & slope recommendations

H

Traffic Cantrol - closures ar detours
Envirenmental permitting requirements - wetlands
Hydraulic recommendations and culverts

Storm Sewer extents

Bridge span lengths (between supports)
Foundation complexity of the bridge

Right-of-way acquisition and costs

Extent of utlity relocations and costs
Contract time
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3) if required, what is the first stage that you could roughly compute or identify this

vanable?

Mote: Roughly = approximate order-of-magnitude. Think +/- 50% from the actual value.

= Final
Momination PFR AEG of FIH Dl
ns
Work

Urban or rural project
Construction on MNative American Reservations

Context sensitive design issues, controversy - level of
environmental documentation

Diesign AADT

Design spesd(s)

Site topography (steep, flat or undulating terrain)
Start and end stations, length and width

Existing surface conditions and depths

Mumber of intersections in project

Mumber of bridges requiring work/reconstruction
Intersaction signalization and signage

Letting date

Horizontal and vertical alignment

Extent of changes to the existing intersections

Curb & Gutter and Sidewalk:
Bridge type (steel or concrete) and complexity

Wolumes of excavation and embankment
Geotechnical - subsurface & slope recommendations
Bridge deck area

Traffic Cantrol - closures or detours

Envirenmental permitting reguirements - wetlands
Hydraulic recommendations and cubverts

Storm Sewer extents

Bridge span lengths (between supports)

Foundation complexity of the bridge

Right-of-way acquisition and costs

Extent of uility relocations and costs
Contract time
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4) Rate the_additional effort required to identify or compute this costinfluencer at an earlier

stage:

Medium = High = lots of
Awerage additional extra time and
time and effort effort

Urban or rural project
Caonstruction on Native American Reservations

Context sensitive design issues, controversy - level of
environmental docurmentation

Ciesign AADT

Design speed(s)

Site topography (steep, flat or undulating terrain)
Start and end stations, length and width

Existing surface conditions and depths

Mumber of intersections in project

Mumber of bridges reguiring work/ reconstruction
Intersaction signalization and signage

Letting date

Harizonital and vertical alignment

Extent of changes to the existing intersections

Typical section (depths of surfacing and aggregate]
Curb & Gutter and Sidewalk

Bridge type (steel or concrete) and complexity
Wolumes of excavation and embankment
Geotachnical - subsurfzce & slope recommendations
Bridge deck ares

Traffic Cantral - closures or detours

Erwironmental permitting reguirements - wetlands
Hydraulic recommendations and culverts

Storm Sewer extents

Bridge span lengths (between supports)
Foundation complexity of the bridge

Right-of-way acquisition and costs

Extent of uility relocations and costs
Contract time
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5) How influential do you believe this variable is on construction cost?

Maote: For this guestion assume that the project is a reconstruction or major rehabilitation
project. |.e not a resurfacing or pavement preservation project. Also please do not select all
varables as a "Major Influence” to the cost and rate the influence relative to the other
variables.

Does not B
infi Minor  Awverage  Major
IMMUBNE® | fluence Influence Influsnce

Urban or rural project
Caonstruction on Native American Reservations

Content sensitive design issues, controversy - level of
envircnmental decumentation

Design AADT

|
Design spead(s)

Site topography (steep, flat or undulating terrain)
Start and end stations, length and width

Existing surface conditions and depths

Mumber of intersections in project

Mumber of bridges reguiring work/reconstruction
Intersaction signalization and signage

Letting date

Harizonital and vertical alignment

Extent of changes to the existing intersections
Typical section (depths of surfacing and aggregate)
Curb & Gutter and Sidewalk

Bridge type (steel or concrete) and complexity
Wolumes of excavation and embankment
Geotachnical - subsurface & slope recommendations
Bridge deck ares

Traffic Cantrol - closures or detours
Environmental permitting reguirements - wetlands
Hydraulic recommendations and cubverts

Srorm Sewer extents

Bridge span lengths (between supports)
Foundation complexity of the bridge

Right-of-way acguisition and costs

Extent of utility relocations and costs
Contract time
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Key to analyze the survey results:

Question 1) When do you typically compute or identify this variable in the preconstruction stages?

Nomination PFR A&G SOW PIH Final
Answer: Plans
Scale: 1 2 3 4 6 7

Question 2) Rate the typical effort required to compute or identify each variable:

Rating: L = Low effort, information M = Medium time and effort | H = High effort involved.
available, desktop study Possibly site visits, site
investigations and
approximations.
Scale: 1 2 3

Question 3) If required, what is the first stage that you could roughly compute or identify this variable?

Nomination PFR A&G SOW PIH Final
Answer: Plans
Scale: 1 2 3 4 6 7

Question 4) Rate the additional effort required to identify or compute this cost influencer at an earlier stage

Rating: L = Little extra effort M = Average additional effort | H = Lots of extra effort and
and time time
Scale: 1 2 3

Question 5) How influential do you believe this variable is on construction cost:

Answer:

Does not influence
cost

Minor influence

Average influence | Major influence

Scale:

1

4
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Results using the key from above
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